Loading…

Enhanced YOLOv5: An Efficient Road Object Detection Method

Accurate identification of road objects is crucial for achieving intelligent traffic systems. However, developing efficient and accurate road object detection methods in complex traffic scenarios has always been a challenging task. The objective of this study was to improve the target detection algo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (20), p.8355
Main Authors: Chen, Hao, Chen, Zhan, Yu, Hang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate identification of road objects is crucial for achieving intelligent traffic systems. However, developing efficient and accurate road object detection methods in complex traffic scenarios has always been a challenging task. The objective of this study was to improve the target detection algorithm for road object detection by enhancing the algorithm’s capability to fuse features of different scales and levels, thereby improving the accurate identification of objects in complex road scenes. We propose an improved method called the Enhanced YOLOv5 algorithm for road object detection. By introducing the Bidirectional Feature Pyramid Network (BiFPN) into the YOLOv5 algorithm, we address the challenges of multi-scale and multi-level feature fusion and enhance the detection capability for objects of different sizes. Additionally, we integrate the Convolutional Block Attention Module (CBAM) into the existing YOLOv5 model to enhance its feature representation capability. Furthermore, we employ a new non-maximum suppression technique called Distance Intersection Over Union (DIOU) to effectively address issues such as misjudgment and duplicate detection when significant overlap occurs between bounding boxes. We use mean Average Precision (mAP) and Precision (P) as evaluation metrics. Finally, experimental results on the BDD100K dataset demonstrate that the improved YOLOv5 algorithm achieves a 1.6% increase in object detection mAP, while the P value increases by 5.3%, effectively improving the accuracy and robustness of road object recognition.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23208355