Loading…

Cavitand and Molecular Cage-Based Porous Organic Polymers

Supramolecular cavitands and organic cages having a well-defined cavity and excellent host–guest complexing ability have been explored for a myriad of applications ranging from catalysis to molecular separation to drug delivery. On the other hand, porous organic polymers (POPs) having tunable porosi...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-11, Vol.5 (44), p.28413-28424
Main Authors: Giri, Arkaprabha, Sahoo, Aniket, Dutta, Tapas Kumar, Patra, Abhijit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Supramolecular cavitands and organic cages having a well-defined cavity and excellent host–guest complexing ability have been explored for a myriad of applications ranging from catalysis to molecular separation to drug delivery. On the other hand, porous organic polymers (POPs) having tunable porosity and a robust network structure have emerged as advanced materials for molecular storage, heterogeneous catalysis, water purification, light harvesting, and energy storage. A fruitful marriage between guest-responsive discrete porous supramolecular hosts and highly porous organic polymers has created a new interface in supramolecular chemistry and materials science, confronting the challenges related to energy and the environment. In this mini-review, we have addressed the recent advances (from 2015 to the middle of 2020) of cavitand and organic cage-based porous organic polymers for sustainable development, including applications in heterogeneous catalysis, CO2 conversion, micropollutant separation, and heavy metal sequestration from water. We have highlighted the “cavitand/cage-to-framework” design strategy and delineated the future scope of the emerging new class of porous organic networks from “preporous” building blocks.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c04248