Loading…
Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data with Fine Segmentation Network
In this paper, a novel convolutional neural network (CNN)-based architecture, named fine segmentation network (FSN), is proposed for semantic segmentation of high resolution aerial images and light detection and ranging (LiDAR) data. The proposed architecture follows the encoder–decoder paradigm and...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-05, Vol.10 (5), p.743 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a novel convolutional neural network (CNN)-based architecture, named fine segmentation network (FSN), is proposed for semantic segmentation of high resolution aerial images and light detection and ranging (LiDAR) data. The proposed architecture follows the encoder–decoder paradigm and the multi-sensor fusion is accomplished in the feature-level using multi-layer perceptron (MLP). The encoder consists of two parts: the main encoder based on the convolutional layers of Vgg-16 network for color-infrared images and a lightweight branch for LiDAR data. In the decoder stage, to adaptively upscale the coarse outputs from encoder, the Sub-Pixel convolution layers replace the transposed convolutional layers or other common up-sampling layers. Based on this design, the features from different stages and sensors are integrated for a MLP-based high-level learning. In the training phase, transfer learning is employed to infer the features learned from generic dataset to remote sensing data. The proposed FSN is evaluated by using the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and Vaihingen 2D Semantic Labeling datasets. Experimental results demonstrate that the proposed framework can bring considerable improvement to other related networks. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs10050743 |