Loading…
Feedback computability on Cantor space
We introduce the notion of feedback computable functions from $2^\omega$ to $2^\omega$, extending feedback Turing computation in analogy with the standard notion of computability for functions from $2^\omega$ to $2^\omega$. We then show that the feedback computable functions are precisely the effect...
Saved in:
Published in: | Logical methods in computer science 2019-01, Vol.15, Issue 2 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of feedback computable functions from $2^\omega$ to $2^\omega$, extending feedback Turing computation in analogy with the standard notion of computability for functions from $2^\omega$ to $2^\omega$. We then show that the feedback computable functions are precisely the effectively Borel functions. With this as motivation we define the notion of a feedback computable function on a structure, independent of any coding of the structure as a real. We show that this notion is absolute, and as an example characterize those functions that are computable from a Gandy ordinal with some finite subset distinguished. |
---|---|
ISSN: | 1860-5974 |
DOI: | 10.23638/LMCS-15(2:7)2019 |