Loading…
Machine learning model for predicting acute kidney injury progression in critically ill patients
Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to chronic kidney disease. The purpose of this study is to develop a prediction...
Saved in:
Published in: | BMC medical informatics and decision making 2022-01, Vol.22 (1), p.17-17, Article 17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to chronic kidney disease. The purpose of this study is to develop a prediction model that predict whether patients with AKI stage 1/2 will progress to AKI stage 3.
Patients with AKI stage 1/2, when they were first diagnosed with AKI in the Medical Information Mart for Intensive Care, were included. We used the Logistic regression and machine learning extreme gradient boosting (XGBoost) to build two models which can predict patients who will progress to AKI stage 3. Established models were evaluated by cross-validation, receiver operating characteristic curve, and precision-recall curves.
We included 25,711 patients, of whom 2130 (8.3%) progressed to AKI stage 3. Creatinine, multiple organ failure syndromes were the most important in AKI progression prediction. The XGBoost model has a better performance than the Logistic regression model on predicting AKI stage 3 progression. Thus, we build a software based on our data which can predict AKI progression in real time.
The XGboost model can better identify patients with AKI progression than Logistic regression model. Machine learning techniques may improve predictive modeling in medical research. |
---|---|
ISSN: | 1472-6947 1472-6947 |
DOI: | 10.1186/s12911-021-01740-2 |