Loading…
Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects
Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO) vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excit...
Saved in:
Published in: | Universe (Basel) 2018-02, Vol.4 (2), p.23 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO) vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excitations originating in the tight-binding approximation for the nearest-neighbor interaction of atoms in the crystal lattice, we consider quantum ground-state effects in Dirac materials with two-dimensional monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Hamiltonian operator. We show that the quantum ground-state effects are independent of the disclination size, and we find circumstances in which they are independent of parameters of the boundary condition. |
---|---|
ISSN: | 2218-1997 2218-1997 |
DOI: | 10.3390/universe4020023 |