Loading…

RESEARCH OF TECHNOLOGICAL POSSIBILITIES OF HEAT PUMPS’ APPLICATION IN DISTRICT HEATING OF RESIDENTIAL BUILDINGS

The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European c...

Full description

Saved in:
Bibliographic Details
Published in:Science future of Lithuania 2022-08, Vol.14, p.1-7
Main Authors: Rogoža, Artur, Misevičiūtė, Violeta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European countries. One of the measures planned for the Lithuanian energy policy in the heat sector of renewable energy sources (RES) until 2030 is the installation of heat pumps (HP) in the DH networks. The purpose of the study is to evaluate the technological possibilities of integrating HP into existing buildings to evaluate the low temperature heat supply. To evaluate the potential temperature lowering of the building heating system, a graph of the lowest possible building heating system temperatures is set, according to which the heat pump for the heating substation is selected, which would raise the temperature of the heat carrier supplied from DH networks to the required temperature for the heating and hot water systems of the building. Applying thermodynamic analysis, a mathematical model is developed that evaluates the ability of the HP to raise the temperature of the supplied heat carrier at the heat substation and determines the energy efficiency of such a solution. During the simulation, two alternatives of constant (regardless of outdoor air temperature) heat carrier temperatures supplied from DH networks were considered: 60 °C (alternative A) and 55 °C (alternative B). To adapt the most appropriate option for the integration of HP, it would be appropriate to combine both alternatives, i. y. to supply 60 °C from the DH network in the cold period of the year and 55 °C in the warm period of the year.
ISSN:2029-2341
2029-2252
DOI:10.3846/mla.2022.17224