Loading…
Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies
Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofl...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (24), p.8865 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes
-dicyclohexyl carbodiimide-mediated coupling between COOH and NH
functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27248865 |