Loading…
Supplementation of Heat-Treated Lactiplantibacillus plantarum nF1 Changes the Production of Short-Chain Fatty Acids in Healthy Infants
Background. Imbalance of the gut microbiome and decrease in the number of short-chain fatty acid (SCFA)-producing bacteria often affect human health by altering intestinal and immune homeostasis. The use of probiotics has been shown to be an attractive method to modulate gut microbiota to prevent or...
Saved in:
Published in: | Journal of nutrition and metabolism 2024-04, Vol.2024, p.5558566-8 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background. Imbalance of the gut microbiome and decrease in the number of short-chain fatty acid (SCFA)-producing bacteria often affect human health by altering intestinal and immune homeostasis. The use of probiotics has been shown to be an attractive method to modulate gut microbiota to prevent or treat intestinal dysbiosis. Likewise, this study aimed to determine whether the oral consumption of heat-treated Lactiplantibacillus plantarum nF1 (HLp-nF1) induces changes in the gut environment in healthy infants by measuring changes in fecal SCFAs. Methods. The study enrolled 43 infants aged under 2 months, with 30 infants in the HLp-nF1 group receiving HLp-nF1 orally (2.5 × 1010 cells/g/pack, daily dose of two packs) for 8 weeks. The fecal samples were collected and the questionnaires were administered at weeks 0 and 8. Results. The concentrations of the total SCFAs, acetate, propionate, and butyrate significantly increased following HLp-nF1 supplementation (P |
---|---|
ISSN: | 2090-0724 2090-0732 |
DOI: | 10.1155/2024/5558566 |