Loading…

Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations

Mutation-mediated treatment resistance is one of the primary challenges for modern antibiotic and anti-cancer therapy. Yet, many resistance mutations have a substantial fitness cost and are subject to purifying selection. How emerging resistant lineages may escape purifying selection via subsequent...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-12, Vol.13 (1), p.7916-7916, Article 7916
Main Authors: Aif, Serhii, Appold, Nico, Kampman, Lucas, Hallatschek, Oskar, Kayser, Jona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutation-mediated treatment resistance is one of the primary challenges for modern antibiotic and anti-cancer therapy. Yet, many resistance mutations have a substantial fitness cost and are subject to purifying selection. How emerging resistant lineages may escape purifying selection via subsequent compensatory mutations is still unclear due to the difficulty of tracking such evolutionary rescue dynamics in space and time. Here, we introduce a system of fluorescence-coupled synthetic mutations to show that the probability of evolutionary rescue, and the resulting long-term persistence of drug resistant mutant lineages, is dramatically increased in dense microbial populations. By tracking the entire evolutionary trajectory of thousands of resistant lineages in expanding yeast colonies we uncover an underlying quasi-stable equilibrium between the opposing forces of radial expansion and natural selection, a phenomenon we term inflation-selection balance. Tailored computational models and agent-based simulations corroborate the fundamental nature of the observed effects and demonstrate the potential impact on drug resistance evolution in cancer. The described phenomena should be considered when predicting multi-step evolutionary dynamics in any mechanically compact cellular population, including pathogenic microbial biofilms and solid tumors. The insights gained will be especially valuable for the quantitative understanding of response to treatment, including emerging evolution-based therapy strategies. Antibiotic and anti-cancer therapy are challenged by mutation-mediated treatment resistance despite many mutations being maladaptive. Here, the authors introduce a system that shows how the probability of the long-term persistence of drug-resistant mutant lineages can be increased in dense microbial populations by acquiring multiple mutations.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-35484-y