Loading…

Process Integration of Green Hydrogen: Decarbonization of Chemical Industries

Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previousl...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-09, Vol.13 (18), p.4859
Main Authors: Ostadi, Mohammad, Paso, Kristofer Gunnar, Rodriguez-Fabia, Sandra, Øi, Lars Erik, Manenti, Flavio, Hillestad, Magne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3
cites cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3
container_end_page
container_issue 18
container_start_page 4859
container_title Energies (Basel)
container_volume 13
creator Ostadi, Mohammad
Paso, Kristofer Gunnar
Rodriguez-Fabia, Sandra
Øi, Lars Erik
Manenti, Flavio
Hillestad, Magne
description Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.
doi_str_mv 10.3390/en13184859
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1</doaj_id><sourcerecordid>2535460830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</originalsourceid><addsrcrecordid>eNpVkcFKAzEQhhdRUGovPsGCN6U62dnNJt5Kq7ZQ0YN4DdnspKbUTU22SH1611aqzmWG4ZsPhj9JzhhcIUq4poYhE7ko5EFywqTkAwYlHv6Zj5N-jAvoCpEh4kny8BS8oRjTadPSPOjW-Sb1Nr0PRE062dTBz6m5ScdkdKh84z73yOiV3pzRy-60Xsc2OIqnyZHVy0j9n95Lnu9un0eTwezxfjoazgYGZdkOilprowVoQsw0VkxAmRXCaGMZr1kOzBbcAtaQkQBpMyap4oIVkHOyBnvJdKetvV6oVXBvOmyU105tFz7MlQ6tM0tS3JYSas3BkMwJM4GVNBwsGShtaVjnuty54get1tU_29i9DLe24FQuc8E7-nxHr4J_X1Ns1cKvQ9P9qrICi5yDQOioix1lgo8xkN1bGajvqNRvVPgFUniFbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535460830</pqid></control><display><type>article</type><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><source>Publicly Available Content Database</source><creator>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</creator><creatorcontrib>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</creatorcontrib><description>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13184859</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Anthropogenic factors ; Biogas ; Biogas upgrading ; Biomass Gasification ; Calcination ; Carbohydrates ; Carbon cycle ; Carbon dioxide ; Chemical energy ; Chemical industry ; Configurations ; Consumers ; Consumption ; Cost Control ; Cost reduction ; Decarbonization ; Economic feasibilities ; Efficiency ; Electricity ; Electrolysis ; Emissions ; Energy ; Energy industry ; Energy resources ; Energy storage ; Fermentation ; Fossil fuels ; Gasification ; Green hydrogen ; Hydrocarbons ; Hydrogen production ; Incineration ; Industrial development ; Industrial plant emissions ; Industrial processs ; Inert gases ; Integration ; Iron reduction ; Microprocessors ; Municipal waste incineration ; Municipal wastes ; Oxy-combustion ; Power sources ; Prices ; Process configuration ; Process design ; Process integration ; Processes ; Production costs ; Pulp production ; Renewable resources ; Solar energy ; Solar power ; Thermal energy ; Thermal integration ; Trends ; Waste disposal ; Waste incineration ; Water ; Wind power</subject><ispartof>Energies (Basel), 2020-09, Vol.13 (18), p.4859</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</citedby><cites>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</cites><orcidid>0000-0002-3463-0807 ; 0000-0002-4273-231X ; 0000-0002-0502-9780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535460830/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535460830?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-49486$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostadi, Mohammad</creatorcontrib><creatorcontrib>Paso, Kristofer Gunnar</creatorcontrib><creatorcontrib>Rodriguez-Fabia, Sandra</creatorcontrib><creatorcontrib>Øi, Lars Erik</creatorcontrib><creatorcontrib>Manenti, Flavio</creatorcontrib><creatorcontrib>Hillestad, Magne</creatorcontrib><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><title>Energies (Basel)</title><description>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</description><subject>Alternative energy sources</subject><subject>Anthropogenic factors</subject><subject>Biogas</subject><subject>Biogas upgrading</subject><subject>Biomass Gasification</subject><subject>Calcination</subject><subject>Carbohydrates</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Chemical energy</subject><subject>Chemical industry</subject><subject>Configurations</subject><subject>Consumers</subject><subject>Consumption</subject><subject>Cost Control</subject><subject>Cost reduction</subject><subject>Decarbonization</subject><subject>Economic feasibilities</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electrolysis</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Gasification</subject><subject>Green hydrogen</subject><subject>Hydrocarbons</subject><subject>Hydrogen production</subject><subject>Incineration</subject><subject>Industrial development</subject><subject>Industrial plant emissions</subject><subject>Industrial processs</subject><subject>Inert gases</subject><subject>Integration</subject><subject>Iron reduction</subject><subject>Microprocessors</subject><subject>Municipal waste incineration</subject><subject>Municipal wastes</subject><subject>Oxy-combustion</subject><subject>Power sources</subject><subject>Prices</subject><subject>Process configuration</subject><subject>Process design</subject><subject>Process integration</subject><subject>Processes</subject><subject>Production costs</subject><subject>Pulp production</subject><subject>Renewable resources</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Thermal energy</subject><subject>Thermal integration</subject><subject>Trends</subject><subject>Waste disposal</subject><subject>Waste incineration</subject><subject>Water</subject><subject>Wind power</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkcFKAzEQhhdRUGovPsGCN6U62dnNJt5Kq7ZQ0YN4DdnspKbUTU22SH1611aqzmWG4ZsPhj9JzhhcIUq4poYhE7ko5EFywqTkAwYlHv6Zj5N-jAvoCpEh4kny8BS8oRjTadPSPOjW-Sb1Nr0PRE062dTBz6m5ScdkdKh84z73yOiV3pzRy-60Xsc2OIqnyZHVy0j9n95Lnu9un0eTwezxfjoazgYGZdkOilprowVoQsw0VkxAmRXCaGMZr1kOzBbcAtaQkQBpMyap4oIVkHOyBnvJdKetvV6oVXBvOmyU105tFz7MlQ6tM0tS3JYSas3BkMwJM4GVNBwsGShtaVjnuty54get1tU_29i9DLe24FQuc8E7-nxHr4J_X1Ns1cKvQ9P9qrICi5yDQOioix1lgo8xkN1bGajvqNRvVPgFUniFbQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ostadi, Mohammad</creator><creator>Paso, Kristofer Gunnar</creator><creator>Rodriguez-Fabia, Sandra</creator><creator>Øi, Lars Erik</creator><creator>Manenti, Flavio</creator><creator>Hillestad, Magne</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3463-0807</orcidid><orcidid>https://orcid.org/0000-0002-4273-231X</orcidid><orcidid>https://orcid.org/0000-0002-0502-9780</orcidid></search><sort><creationdate>20200901</creationdate><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><author>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Anthropogenic factors</topic><topic>Biogas</topic><topic>Biogas upgrading</topic><topic>Biomass Gasification</topic><topic>Calcination</topic><topic>Carbohydrates</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Chemical energy</topic><topic>Chemical industry</topic><topic>Configurations</topic><topic>Consumers</topic><topic>Consumption</topic><topic>Cost Control</topic><topic>Cost reduction</topic><topic>Decarbonization</topic><topic>Economic feasibilities</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electrolysis</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Gasification</topic><topic>Green hydrogen</topic><topic>Hydrocarbons</topic><topic>Hydrogen production</topic><topic>Incineration</topic><topic>Industrial development</topic><topic>Industrial plant emissions</topic><topic>Industrial processs</topic><topic>Inert gases</topic><topic>Integration</topic><topic>Iron reduction</topic><topic>Microprocessors</topic><topic>Municipal waste incineration</topic><topic>Municipal wastes</topic><topic>Oxy-combustion</topic><topic>Power sources</topic><topic>Prices</topic><topic>Process configuration</topic><topic>Process design</topic><topic>Process integration</topic><topic>Processes</topic><topic>Production costs</topic><topic>Pulp production</topic><topic>Renewable resources</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Thermal energy</topic><topic>Thermal integration</topic><topic>Trends</topic><topic>Waste disposal</topic><topic>Waste incineration</topic><topic>Water</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostadi, Mohammad</creatorcontrib><creatorcontrib>Paso, Kristofer Gunnar</creatorcontrib><creatorcontrib>Rodriguez-Fabia, Sandra</creatorcontrib><creatorcontrib>Øi, Lars Erik</creatorcontrib><creatorcontrib>Manenti, Flavio</creatorcontrib><creatorcontrib>Hillestad, Magne</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostadi, Mohammad</au><au>Paso, Kristofer Gunnar</au><au>Rodriguez-Fabia, Sandra</au><au>Øi, Lars Erik</au><au>Manenti, Flavio</au><au>Hillestad, Magne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</atitle><jtitle>Energies (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>4859</spage><pages>4859-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13184859</doi><orcidid>https://orcid.org/0000-0002-3463-0807</orcidid><orcidid>https://orcid.org/0000-0002-4273-231X</orcidid><orcidid>https://orcid.org/0000-0002-0502-9780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-09, Vol.13 (18), p.4859
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1
source Publicly Available Content Database
subjects Alternative energy sources
Anthropogenic factors
Biogas
Biogas upgrading
Biomass Gasification
Calcination
Carbohydrates
Carbon cycle
Carbon dioxide
Chemical energy
Chemical industry
Configurations
Consumers
Consumption
Cost Control
Cost reduction
Decarbonization
Economic feasibilities
Efficiency
Electricity
Electrolysis
Emissions
Energy
Energy industry
Energy resources
Energy storage
Fermentation
Fossil fuels
Gasification
Green hydrogen
Hydrocarbons
Hydrogen production
Incineration
Industrial development
Industrial plant emissions
Industrial processs
Inert gases
Integration
Iron reduction
Microprocessors
Municipal waste incineration
Municipal wastes
Oxy-combustion
Power sources
Prices
Process configuration
Process design
Process integration
Processes
Production costs
Pulp production
Renewable resources
Solar energy
Solar power
Thermal energy
Thermal integration
Trends
Waste disposal
Waste incineration
Water
Wind power
title Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Integration%20of%20Green%20Hydrogen:%20Decarbonization%20of%20Chemical%20Industries&rft.jtitle=Energies%20(Basel)&rft.au=Ostadi,%20Mohammad&rft.date=2020-09-01&rft.volume=13&rft.issue=18&rft.spage=4859&rft.pages=4859-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13184859&rft_dat=%3Cproquest_doaj_%3E2535460830%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535460830&rft_id=info:pmid/&rfr_iscdi=true