Loading…
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previousl...
Saved in:
Published in: | Energies (Basel) 2020-09, Vol.13 (18), p.4859 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3 |
container_end_page | |
container_issue | 18 |
container_start_page | 4859 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Ostadi, Mohammad Paso, Kristofer Gunnar Rodriguez-Fabia, Sandra Øi, Lars Erik Manenti, Flavio Hillestad, Magne |
description | Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions. |
doi_str_mv | 10.3390/en13184859 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1</doaj_id><sourcerecordid>2535460830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</originalsourceid><addsrcrecordid>eNpVkcFKAzEQhhdRUGovPsGCN6U62dnNJt5Kq7ZQ0YN4DdnspKbUTU22SH1611aqzmWG4ZsPhj9JzhhcIUq4poYhE7ko5EFywqTkAwYlHv6Zj5N-jAvoCpEh4kny8BS8oRjTadPSPOjW-Sb1Nr0PRE062dTBz6m5ScdkdKh84z73yOiV3pzRy-60Xsc2OIqnyZHVy0j9n95Lnu9un0eTwezxfjoazgYGZdkOilprowVoQsw0VkxAmRXCaGMZr1kOzBbcAtaQkQBpMyap4oIVkHOyBnvJdKetvV6oVXBvOmyU105tFz7MlQ6tM0tS3JYSas3BkMwJM4GVNBwsGShtaVjnuty54get1tU_29i9DLe24FQuc8E7-nxHr4J_X1Ns1cKvQ9P9qrICi5yDQOioix1lgo8xkN1bGajvqNRvVPgFUniFbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535460830</pqid></control><display><type>article</type><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><source>Publicly Available Content Database</source><creator>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</creator><creatorcontrib>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</creatorcontrib><description>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13184859</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Anthropogenic factors ; Biogas ; Biogas upgrading ; Biomass Gasification ; Calcination ; Carbohydrates ; Carbon cycle ; Carbon dioxide ; Chemical energy ; Chemical industry ; Configurations ; Consumers ; Consumption ; Cost Control ; Cost reduction ; Decarbonization ; Economic feasibilities ; Efficiency ; Electricity ; Electrolysis ; Emissions ; Energy ; Energy industry ; Energy resources ; Energy storage ; Fermentation ; Fossil fuels ; Gasification ; Green hydrogen ; Hydrocarbons ; Hydrogen production ; Incineration ; Industrial development ; Industrial plant emissions ; Industrial processs ; Inert gases ; Integration ; Iron reduction ; Microprocessors ; Municipal waste incineration ; Municipal wastes ; Oxy-combustion ; Power sources ; Prices ; Process configuration ; Process design ; Process integration ; Processes ; Production costs ; Pulp production ; Renewable resources ; Solar energy ; Solar power ; Thermal energy ; Thermal integration ; Trends ; Waste disposal ; Waste incineration ; Water ; Wind power</subject><ispartof>Energies (Basel), 2020-09, Vol.13 (18), p.4859</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</citedby><cites>FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</cites><orcidid>0000-0002-3463-0807 ; 0000-0002-4273-231X ; 0000-0002-0502-9780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535460830/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535460830?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-49486$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostadi, Mohammad</creatorcontrib><creatorcontrib>Paso, Kristofer Gunnar</creatorcontrib><creatorcontrib>Rodriguez-Fabia, Sandra</creatorcontrib><creatorcontrib>Øi, Lars Erik</creatorcontrib><creatorcontrib>Manenti, Flavio</creatorcontrib><creatorcontrib>Hillestad, Magne</creatorcontrib><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><title>Energies (Basel)</title><description>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</description><subject>Alternative energy sources</subject><subject>Anthropogenic factors</subject><subject>Biogas</subject><subject>Biogas upgrading</subject><subject>Biomass Gasification</subject><subject>Calcination</subject><subject>Carbohydrates</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Chemical energy</subject><subject>Chemical industry</subject><subject>Configurations</subject><subject>Consumers</subject><subject>Consumption</subject><subject>Cost Control</subject><subject>Cost reduction</subject><subject>Decarbonization</subject><subject>Economic feasibilities</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electrolysis</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Gasification</subject><subject>Green hydrogen</subject><subject>Hydrocarbons</subject><subject>Hydrogen production</subject><subject>Incineration</subject><subject>Industrial development</subject><subject>Industrial plant emissions</subject><subject>Industrial processs</subject><subject>Inert gases</subject><subject>Integration</subject><subject>Iron reduction</subject><subject>Microprocessors</subject><subject>Municipal waste incineration</subject><subject>Municipal wastes</subject><subject>Oxy-combustion</subject><subject>Power sources</subject><subject>Prices</subject><subject>Process configuration</subject><subject>Process design</subject><subject>Process integration</subject><subject>Processes</subject><subject>Production costs</subject><subject>Pulp production</subject><subject>Renewable resources</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Thermal energy</subject><subject>Thermal integration</subject><subject>Trends</subject><subject>Waste disposal</subject><subject>Waste incineration</subject><subject>Water</subject><subject>Wind power</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkcFKAzEQhhdRUGovPsGCN6U62dnNJt5Kq7ZQ0YN4DdnspKbUTU22SH1611aqzmWG4ZsPhj9JzhhcIUq4poYhE7ko5EFywqTkAwYlHv6Zj5N-jAvoCpEh4kny8BS8oRjTadPSPOjW-Sb1Nr0PRE062dTBz6m5ScdkdKh84z73yOiV3pzRy-60Xsc2OIqnyZHVy0j9n95Lnu9un0eTwezxfjoazgYGZdkOilprowVoQsw0VkxAmRXCaGMZr1kOzBbcAtaQkQBpMyap4oIVkHOyBnvJdKetvV6oVXBvOmyU105tFz7MlQ6tM0tS3JYSas3BkMwJM4GVNBwsGShtaVjnuty54get1tU_29i9DLe24FQuc8E7-nxHr4J_X1Ns1cKvQ9P9qrICi5yDQOioix1lgo8xkN1bGajvqNRvVPgFUniFbQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ostadi, Mohammad</creator><creator>Paso, Kristofer Gunnar</creator><creator>Rodriguez-Fabia, Sandra</creator><creator>Øi, Lars Erik</creator><creator>Manenti, Flavio</creator><creator>Hillestad, Magne</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3463-0807</orcidid><orcidid>https://orcid.org/0000-0002-4273-231X</orcidid><orcidid>https://orcid.org/0000-0002-0502-9780</orcidid></search><sort><creationdate>20200901</creationdate><title>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</title><author>Ostadi, Mohammad ; Paso, Kristofer Gunnar ; Rodriguez-Fabia, Sandra ; Øi, Lars Erik ; Manenti, Flavio ; Hillestad, Magne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Anthropogenic factors</topic><topic>Biogas</topic><topic>Biogas upgrading</topic><topic>Biomass Gasification</topic><topic>Calcination</topic><topic>Carbohydrates</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Chemical energy</topic><topic>Chemical industry</topic><topic>Configurations</topic><topic>Consumers</topic><topic>Consumption</topic><topic>Cost Control</topic><topic>Cost reduction</topic><topic>Decarbonization</topic><topic>Economic feasibilities</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electrolysis</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Gasification</topic><topic>Green hydrogen</topic><topic>Hydrocarbons</topic><topic>Hydrogen production</topic><topic>Incineration</topic><topic>Industrial development</topic><topic>Industrial plant emissions</topic><topic>Industrial processs</topic><topic>Inert gases</topic><topic>Integration</topic><topic>Iron reduction</topic><topic>Microprocessors</topic><topic>Municipal waste incineration</topic><topic>Municipal wastes</topic><topic>Oxy-combustion</topic><topic>Power sources</topic><topic>Prices</topic><topic>Process configuration</topic><topic>Process design</topic><topic>Process integration</topic><topic>Processes</topic><topic>Production costs</topic><topic>Pulp production</topic><topic>Renewable resources</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Thermal energy</topic><topic>Thermal integration</topic><topic>Trends</topic><topic>Waste disposal</topic><topic>Waste incineration</topic><topic>Water</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostadi, Mohammad</creatorcontrib><creatorcontrib>Paso, Kristofer Gunnar</creatorcontrib><creatorcontrib>Rodriguez-Fabia, Sandra</creatorcontrib><creatorcontrib>Øi, Lars Erik</creatorcontrib><creatorcontrib>Manenti, Flavio</creatorcontrib><creatorcontrib>Hillestad, Magne</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostadi, Mohammad</au><au>Paso, Kristofer Gunnar</au><au>Rodriguez-Fabia, Sandra</au><au>Øi, Lars Erik</au><au>Manenti, Flavio</au><au>Hillestad, Magne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Integration of Green Hydrogen: Decarbonization of Chemical Industries</atitle><jtitle>Energies (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>4859</spage><pages>4859-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13184859</doi><orcidid>https://orcid.org/0000-0002-3463-0807</orcidid><orcidid>https://orcid.org/0000-0002-4273-231X</orcidid><orcidid>https://orcid.org/0000-0002-0502-9780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-09, Vol.13 (18), p.4859 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6f790da60ce94e3283b9c60fec07f7c1 |
source | Publicly Available Content Database |
subjects | Alternative energy sources Anthropogenic factors Biogas Biogas upgrading Biomass Gasification Calcination Carbohydrates Carbon cycle Carbon dioxide Chemical energy Chemical industry Configurations Consumers Consumption Cost Control Cost reduction Decarbonization Economic feasibilities Efficiency Electricity Electrolysis Emissions Energy Energy industry Energy resources Energy storage Fermentation Fossil fuels Gasification Green hydrogen Hydrocarbons Hydrogen production Incineration Industrial development Industrial plant emissions Industrial processs Inert gases Integration Iron reduction Microprocessors Municipal waste incineration Municipal wastes Oxy-combustion Power sources Prices Process configuration Process design Process integration Processes Production costs Pulp production Renewable resources Solar energy Solar power Thermal energy Thermal integration Trends Waste disposal Waste incineration Water Wind power |
title | Process Integration of Green Hydrogen: Decarbonization of Chemical Industries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Integration%20of%20Green%20Hydrogen:%20Decarbonization%20of%20Chemical%20Industries&rft.jtitle=Energies%20(Basel)&rft.au=Ostadi,%20Mohammad&rft.date=2020-09-01&rft.volume=13&rft.issue=18&rft.spage=4859&rft.pages=4859-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13184859&rft_dat=%3Cproquest_doaj_%3E2535460830%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-5daaca80ae332a3b1807258cacf16d1401f56f03d02e809f219eb6815046efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535460830&rft_id=info:pmid/&rfr_iscdi=true |