Loading…

On Martínez–Kaabar Fractal–Fractional Volterra Integral Equations of the Second Kind

The extension of the theory of generalized fractal–fractional calculus, named in this article as Martínez–Kaabar Fractal–Fractional (MKFF) calculus, is addressed to the field of integral equations. Based on the classic Adomian decomposition method, by incorporating the MKFF α,γ-integral operator, we...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2024-08, Vol.8 (8), p.466
Main Authors: Martínez, Francisco, Kaabar, Mohammed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The extension of the theory of generalized fractal–fractional calculus, named in this article as Martínez–Kaabar Fractal–Fractional (MKFF) calculus, is addressed to the field of integral equations. Based on the classic Adomian decomposition method, by incorporating the MKFF α,γ-integral operator, we establish the so-called extended Adomian decomposition method (EADM). The convergence of this proposed technique is also discussed. Finally, some interesting Volterra Integral equations of non-integer order which possess a fractal effect are solved via our proposed approach. The results in this work provide a novel approach that can be employed in solving various problems in science and engineering, which can overcome the challenges of solving various equations, formulated via other classical fractional operators.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract8080466