Loading…

BatTool: projecting bat populations facing multiple stressors using a demographic model

Bats provide ecologically and agriculturally important ecosystem services but are currently experiencing population declines caused by multiple environmental stressors, including mortality from white-nose syndrome and wind energy development. Analyses of the current and future health and viability o...

Full description

Saved in:
Bibliographic Details
Published in:BMC ecology and evolution 2023-10, Vol.23 (1), p.61-61, Article 61
Main Authors: Wiens, Ashton M, Schorg, Amber, Szymanski, Jennifer, Thogmartin, Wayne E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bats provide ecologically and agriculturally important ecosystem services but are currently experiencing population declines caused by multiple environmental stressors, including mortality from white-nose syndrome and wind energy development. Analyses of the current and future health and viability of these species may support conservation management decision making. Demographic modeling provides a quantitative tool for decision makers and conservation managers to make more informed decisions, but widespread adoption of these tools can be limited because of the complexity of the mathematical, statistical, and computational components involved in implementing these models. In this work, we provide an exposition of the BatTool R package, detailing the primary components of the matrix projection model, a publicly accessible graphical user interface ( https://rconnect.usgs.gov/battool ) facilitating user-defined scenario analyses, and its intended uses and limitations (Wiens et al., US Geol Surv Data Release 2022; Wiens et al., US Geol Surv Softw Release 2022). We present a case study involving wind energy permitting, weighing the effects of potential mortality caused by a hypothetical wind energy facility on the projected abundance of four imperiled bat species in the Midwestern United States.
ISSN:2730-7182
2730-7182
DOI:10.1186/s12862-023-02159-1