Loading…
Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fl...
Saved in:
Published in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. |
---|---|
ISSN: | 2356-6140 1537-744X 1537-744X |
DOI: | 10.1155/2014/478401 |