Loading…

Neural dynamics based complete grid coverage by single and multiple mobile robots

Navigation of mobile robots in a grid based environment is useful in applications like warehouse automation. The environment comprises of a number of free grid cells for navigation and remaining grid cells are occupied by obstacles and/or other mobile robots. Such obstructions impose situations of c...

Full description

Saved in:
Bibliographic Details
Published in:SN applied sciences 2021-05, Vol.3 (5), p.543-17, Article 543
Main Authors: Singha, Arindam, Ray, Anjan Kumar, Samaddar, Arun Baran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Navigation of mobile robots in a grid based environment is useful in applications like warehouse automation. The environment comprises of a number of free grid cells for navigation and remaining grid cells are occupied by obstacles and/or other mobile robots. Such obstructions impose situations of collisions and dead-end. In this work, a neural dynamics based algorithm is proposed for complete coverage of a grid based environment while addressing collision avoidance and dead-end situations. The relative heading of the mobile robot with respect to the neighbouring grid cells is considered to calculate the neural activity. Moreover, diagonal movement of the mobile robot through inter grid cells is restricted to ensure safety from the collision with obstacles and other mobile robots. The circumstances where the proposed algorithm will fail to provide completeness are also discussed along with the possible ways to overcome those situations. Simulation results are presented to show the effectiveness of the proposed algorithm for a single and multiple mobile robots. Moreover, comparative studies illustrate improvements over other algorithms on collision free effective path planning of mobile robots within a grid based environment.
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-021-04508-5