Loading…
Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a Heteroatom
To date, the realization of ferromagnetism in two-dimensional carbon semiconductors containing only sp electrons has remained a challenge for spintronics. Here, we utilize the atomic-level functionalization strategy to obtain three carbon matrix materials by accurately introducing different light el...
Saved in:
Published in: | ACS central science 2020-06, Vol.6 (6), p.950-958 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To date, the realization of ferromagnetism in two-dimensional carbon semiconductors containing only sp electrons has remained a challenge for spintronics. Here, we utilize the atomic-level functionalization strategy to obtain three carbon matrix materials by accurately introducing different light elements (H, F, Cl) into graphdiyne’s benzene ring. Their magnetic and conductive characteristics are thoroughly clarified via physical property measurements and DFT calculations. All of these carbon matrix materials retain their excellent intrinsic semiconductor properties. In particular, compared with the paramagnetism of HsGDY and ClsGDY, a robust ferromagnetic ordering as well as high mobility of up to 320 cm2 V–1 s–1 was observed in FsGDY, successfully realizing a ferromagnetic semiconductor. Through theory calculations, this unique ferromagnetic coupling can be attributed to the most striking charge transfer between carbon and fluorine atoms, demonstrating the advantages of controllable fabrication. These results not only reveal the important role of atomic-scale doping/substitution in optimizing graphdiyne material but also create new possibilities for manipulating spins and charges in 2D carbon materials. |
---|---|
ISSN: | 2374-7943 2374-7951 |
DOI: | 10.1021/acscentsci.0c00348 |