Loading…

Deploying and scaling distributed parallel deep neural networks on the Tianhe-3 prototype system

Due to the increase in computing power, it is possible to improve the feature extraction and data fitting capabilities of DNN networks by increasing their depth and model complexity. However, the big data and complex models greatly increase the training overhead of DNN, so accelerating their trainin...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-10, Vol.11 (1), p.20244-20244, Article 20244
Main Authors: Wei, Jia, Zhang, Xingjun, Ji, Zeyu, Li, Jingbo, Wei, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the increase in computing power, it is possible to improve the feature extraction and data fitting capabilities of DNN networks by increasing their depth and model complexity. However, the big data and complex models greatly increase the training overhead of DNN, so accelerating their training process becomes a key task. The Tianhe-3 peak speed is designed to target E-class, and the huge computing power provides a potential opportunity for DNN training. We implement and extend LeNet, AlexNet, VGG, and ResNet model training for a single MT-2000+ and FT-2000+ compute nodes, as well as extended multi-node clusters, and propose an improved gradient synchronization process for Dynamic Allreduce communication optimization strategy for the gradient synchronization process base on the ARM architecture features of the Tianhe-3 prototype, providing experimental data and theoretical basis for further enhancing and improving the performance of the Tianhe-3 prototype in large-scale distributed training of neural networks.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-98794-z