Loading…

Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population

Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2 , CYP2C9*3 , CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , CYP2C19*17 , and CYP3A4 (...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-06, Vol.11 (1), p.12343-12343, Article 12343
Main Authors: Sukprasong, Rattanaporn, Chuwongwattana, Sumonrat, Koomdee, Napatrupron, Jantararoungtong, Thawinee, Prommas, Santirhat, Jinda, Pimonpan, Rachanakul, Jiratha, Nuntharadthanaphong, Nutthan, Jongjitsook, Nutcha, Puangpetch, Apichaya, Sukasem, Chonlaphat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473
cites cdi_FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473
container_end_page 12343
container_issue 1
container_start_page 12343
container_title Scientific reports
container_volume 11
creator Sukprasong, Rattanaporn
Chuwongwattana, Sumonrat
Koomdee, Napatrupron
Jantararoungtong, Thawinee
Prommas, Santirhat
Jinda, Pimonpan
Rachanakul, Jiratha
Nuntharadthanaphong, Nutthan
Jongjitsook, Nutcha
Puangpetch, Apichaya
Sukasem, Chonlaphat
description Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2 , CYP2C9*3 , CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , CYP2C19*17 , and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P 
doi_str_mv 10.1038/s41598-021-90969-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74bcb67535044068aa1971e2450ebe29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74bcb67535044068aa1971e2450ebe29</doaj_id><sourcerecordid>2540516177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3CKxIUDAdvxR3xBWq2grVQJDuXAyXKcya5Xjh3spFL6JDwu3k0FlANzmfH4Pz-PxlMUrzF6j1HdfEgUM9lUiOBKIslltTwrzgmirCI1Ic__is-Ky5QOKBsjkmL5sjirKcaiRuK8-LlxDhyUfYQfM3hjIZWhL5P1u5z1s3EQJttBOQa3DCGOe5uGk8Q4663Rzi2lHcYQJ-2nsovzrhpg0m1w9iFDSvAPy5Ch2-9fyVa-Wz3Ogfbd8VBvaGl9qcu7vbb5lXF2erLBvype9NoluHz0F8W3z5_uttfV7Zerm-3mtjJMoKnidQdCtA3HUpOmNqxnDW8R79pWExCtkVIzzRllDOGeIS65FogLSQFRREV9Udys3C7ogxqjHXRcVNBWnRIh7pSOk81zUIK2puWC1QxRinijNZYCA6EMQQtEZtbHlTXO7QCdAT9F7Z5An954u1e7cK8aLPNn8gx4-wiIIX9HmtRgkwHntIcwJ0UYRQxzLI59v_lHeghz9HlUJ1U2IlFWkVVlYkgpQv-7GYzUcY_Uukcq75E67ZFaclG9FqUs9juIf9D_qfoFviLJdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540000290</pqid></control><display><type>article</type><title>Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sukprasong, Rattanaporn ; Chuwongwattana, Sumonrat ; Koomdee, Napatrupron ; Jantararoungtong, Thawinee ; Prommas, Santirhat ; Jinda, Pimonpan ; Rachanakul, Jiratha ; Nuntharadthanaphong, Nutthan ; Jongjitsook, Nutcha ; Puangpetch, Apichaya ; Sukasem, Chonlaphat</creator><creatorcontrib>Sukprasong, Rattanaporn ; Chuwongwattana, Sumonrat ; Koomdee, Napatrupron ; Jantararoungtong, Thawinee ; Prommas, Santirhat ; Jinda, Pimonpan ; Rachanakul, Jiratha ; Nuntharadthanaphong, Nutthan ; Jongjitsook, Nutcha ; Puangpetch, Apichaya ; Sukasem, Chonlaphat</creatorcontrib><description>Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2 , CYP2C9*3 , CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , CYP2C19*17 , and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P &lt; 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P &lt; 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-90969-y</identifier><identifier>PMID: 34117307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208 ; 692/308 ; 692/4017 ; Alleles ; Cytochrome P450 ; Gene frequency ; Genotyping ; Humanities and Social Sciences ; multidisciplinary ; Pharmacogenomics ; Phenotypes ; Population ; Population genetics ; Science ; Science (multidisciplinary) ; Single-nucleotide polymorphism</subject><ispartof>Scientific reports, 2021-06, Vol.11 (1), p.12343-12343, Article 12343</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473</citedby><cites>FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2540000290/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2540000290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Sukprasong, Rattanaporn</creatorcontrib><creatorcontrib>Chuwongwattana, Sumonrat</creatorcontrib><creatorcontrib>Koomdee, Napatrupron</creatorcontrib><creatorcontrib>Jantararoungtong, Thawinee</creatorcontrib><creatorcontrib>Prommas, Santirhat</creatorcontrib><creatorcontrib>Jinda, Pimonpan</creatorcontrib><creatorcontrib>Rachanakul, Jiratha</creatorcontrib><creatorcontrib>Nuntharadthanaphong, Nutthan</creatorcontrib><creatorcontrib>Jongjitsook, Nutcha</creatorcontrib><creatorcontrib>Puangpetch, Apichaya</creatorcontrib><creatorcontrib>Sukasem, Chonlaphat</creatorcontrib><title>Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2 , CYP2C9*3 , CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , CYP2C19*17 , and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P &lt; 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P &lt; 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.</description><subject>631/208</subject><subject>692/308</subject><subject>692/4017</subject><subject>Alleles</subject><subject>Cytochrome P450</subject><subject>Gene frequency</subject><subject>Genotyping</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Pharmacogenomics</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Population genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single-nucleotide polymorphism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3CKxIUDAdvxR3xBWq2grVQJDuXAyXKcya5Xjh3spFL6JDwu3k0FlANzmfH4Pz-PxlMUrzF6j1HdfEgUM9lUiOBKIslltTwrzgmirCI1Ic__is-Ky5QOKBsjkmL5sjirKcaiRuK8-LlxDhyUfYQfM3hjIZWhL5P1u5z1s3EQJttBOQa3DCGOe5uGk8Q4663Rzi2lHcYQJ-2nsovzrhpg0m1w9iFDSvAPy5Ch2-9fyVa-Wz3Ogfbd8VBvaGl9qcu7vbb5lXF2erLBvype9NoluHz0F8W3z5_uttfV7Zerm-3mtjJMoKnidQdCtA3HUpOmNqxnDW8R79pWExCtkVIzzRllDOGeIS65FogLSQFRREV9Udys3C7ogxqjHXRcVNBWnRIh7pSOk81zUIK2puWC1QxRinijNZYCA6EMQQtEZtbHlTXO7QCdAT9F7Z5An954u1e7cK8aLPNn8gx4-wiIIX9HmtRgkwHntIcwJ0UYRQxzLI59v_lHeghz9HlUJ1U2IlFWkVVlYkgpQv-7GYzUcY_Uukcq75E67ZFaclG9FqUs9juIf9D_qfoFviLJdg</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Sukprasong, Rattanaporn</creator><creator>Chuwongwattana, Sumonrat</creator><creator>Koomdee, Napatrupron</creator><creator>Jantararoungtong, Thawinee</creator><creator>Prommas, Santirhat</creator><creator>Jinda, Pimonpan</creator><creator>Rachanakul, Jiratha</creator><creator>Nuntharadthanaphong, Nutthan</creator><creator>Jongjitsook, Nutcha</creator><creator>Puangpetch, Apichaya</creator><creator>Sukasem, Chonlaphat</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210611</creationdate><title>Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population</title><author>Sukprasong, Rattanaporn ; Chuwongwattana, Sumonrat ; Koomdee, Napatrupron ; Jantararoungtong, Thawinee ; Prommas, Santirhat ; Jinda, Pimonpan ; Rachanakul, Jiratha ; Nuntharadthanaphong, Nutthan ; Jongjitsook, Nutcha ; Puangpetch, Apichaya ; Sukasem, Chonlaphat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/208</topic><topic>692/308</topic><topic>692/4017</topic><topic>Alleles</topic><topic>Cytochrome P450</topic><topic>Gene frequency</topic><topic>Genotyping</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Pharmacogenomics</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Population genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukprasong, Rattanaporn</creatorcontrib><creatorcontrib>Chuwongwattana, Sumonrat</creatorcontrib><creatorcontrib>Koomdee, Napatrupron</creatorcontrib><creatorcontrib>Jantararoungtong, Thawinee</creatorcontrib><creatorcontrib>Prommas, Santirhat</creatorcontrib><creatorcontrib>Jinda, Pimonpan</creatorcontrib><creatorcontrib>Rachanakul, Jiratha</creatorcontrib><creatorcontrib>Nuntharadthanaphong, Nutthan</creatorcontrib><creatorcontrib>Jongjitsook, Nutcha</creatorcontrib><creatorcontrib>Puangpetch, Apichaya</creatorcontrib><creatorcontrib>Sukasem, Chonlaphat</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukprasong, Rattanaporn</au><au>Chuwongwattana, Sumonrat</au><au>Koomdee, Napatrupron</au><au>Jantararoungtong, Thawinee</au><au>Prommas, Santirhat</au><au>Jinda, Pimonpan</au><au>Rachanakul, Jiratha</au><au>Nuntharadthanaphong, Nutthan</au><au>Jongjitsook, Nutcha</au><au>Puangpetch, Apichaya</au><au>Sukasem, Chonlaphat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-06-11</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>12343</spage><epage>12343</epage><pages>12343-12343</pages><artnum>12343</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2 , CYP2C9*3 , CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , CYP2C19*17 , and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2 , CYP2C19*3 , CYP2C19*6 , and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P &lt; 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P &lt; 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34117307</pmid><doi>10.1038/s41598-021-90969-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-06, Vol.11 (1), p.12343-12343, Article 12343
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74bcb67535044068aa1971e2450ebe29
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/208
692/308
692/4017
Alleles
Cytochrome P450
Gene frequency
Genotyping
Humanities and Social Sciences
multidisciplinary
Pharmacogenomics
Phenotypes
Population
Population genetics
Science
Science (multidisciplinary)
Single-nucleotide polymorphism
title Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allele%20frequencies%20of%20single%20nucleotide%20polymorphisms%20of%20clinically%20important%20drug-metabolizing%20enzymes%20CYP2C9,%20CYP2C19,%20and%20CYP3A4%20in%20a%20Thai%20population&rft.jtitle=Scientific%20reports&rft.au=Sukprasong,%20Rattanaporn&rft.date=2021-06-11&rft.volume=11&rft.issue=1&rft.spage=12343&rft.epage=12343&rft.pages=12343-12343&rft.artnum=12343&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-90969-y&rft_dat=%3Cproquest_doaj_%3E2540516177%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-63de77b8619a283c5f586b06dbba2e7bc99a5a6545501f50696a706794e040473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540000290&rft_id=info:pmid/34117307&rfr_iscdi=true