Loading…
Fibonacci fast convergence for neutrino oscillations in matter
Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exp...
Saved in:
Published in: | Physics letters. B 2020-08, Vol.807 (C), p.135592, Article 135592 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2020.135592 |