Loading…

Fibonacci fast convergence for neutrino oscillations in matter

Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exp...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. B 2020-08, Vol.807 (C), p.135592, Article 135592
Main Authors: Denton, Peter B., Parke, Stephen J., Zhang, Xining
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723
cites cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723
container_end_page
container_issue C
container_start_page 135592
container_title Physics letters. B
container_volume 807
creator Denton, Peter B.
Parke, Stephen J.
Zhang, Xining
description Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.
doi_str_mv 10.1016/j.physletb.2020.135592
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269320303968</els_id><doaj_id>oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21</doaj_id><sourcerecordid>S0370269320303968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</originalsourceid><addsrcrecordid>eNqFkE9L7TAQxYM8wfvUryDFfa-TpEnbjSiiT0Fwo-uQTqaaS20kiYLf3vRV3LoamD_nnPkxdsJhy4Hrs9327eUzTZSHrQBRmlKpXuyxDe9aWYumUX_YBmQLtdC9PGB_U9oBAFegN-z8xg9htoi-Gm3KFYb5g-IzzUjVGGI103uOfg5VSOinyWYf5lT5uXq1OVM8YvujnRIdf9dD9nRz_Xh1W98__Lu7uryvsVEy14IG1GJEgBG10koMljeopZPUDYJzLVFh33Vtp7SQfCgDFIPWMDoxqlbIQ3a36rpgd-Yt-lcbP02w3vxvhPhsbMweJzJt44R1Fh2AanoiK4CDhVY1JB0JXrROV62QsjflrUz4Uv6eCbMpUVTD-7Kk1yWMIaVI448pB7NgNyXGN3azYDcr9nJ4sR5SwfHhKS4OC07n42Lggv9N4guscI5J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fibonacci fast convergence for neutrino oscillations in matter</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect (Online service)</source><creator>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining</creator><creatorcontrib>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2020.135592</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physics letters. B, 2020-08, Vol.807 (C), p.135592, Article 135592</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</citedby><cites>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</cites><orcidid>0000-0003-2028-6782 ; 0000-0001-8959-8405 ; 0000000320286782 ; 0000000189598405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269320303968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Denton, Peter B.</creatorcontrib><creatorcontrib>Parke, Stephen J.</creatorcontrib><creatorcontrib>Zhang, Xining</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Fibonacci fast convergence for neutrino oscillations in matter</title><title>Physics letters. B</title><description>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</description><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkE9L7TAQxYM8wfvUryDFfa-TpEnbjSiiT0Fwo-uQTqaaS20kiYLf3vRV3LoamD_nnPkxdsJhy4Hrs9327eUzTZSHrQBRmlKpXuyxDe9aWYumUX_YBmQLtdC9PGB_U9oBAFegN-z8xg9htoi-Gm3KFYb5g-IzzUjVGGI103uOfg5VSOinyWYf5lT5uXq1OVM8YvujnRIdf9dD9nRz_Xh1W98__Lu7uryvsVEy14IG1GJEgBG10koMljeopZPUDYJzLVFh33Vtp7SQfCgDFIPWMDoxqlbIQ3a36rpgd-Yt-lcbP02w3vxvhPhsbMweJzJt44R1Fh2AanoiK4CDhVY1JB0JXrROV62QsjflrUz4Uv6eCbMpUVTD-7Kk1yWMIaVI448pB7NgNyXGN3azYDcr9nJ4sR5SwfHhKS4OC07n42Lggv9N4guscI5J</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Denton, Peter B.</creator><creator>Parke, Stephen J.</creator><creator>Zhang, Xining</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2028-6782</orcidid><orcidid>https://orcid.org/0000-0001-8959-8405</orcidid><orcidid>https://orcid.org/0000000320286782</orcidid><orcidid>https://orcid.org/0000000189598405</orcidid></search><sort><creationdate>20200810</creationdate><title>Fibonacci fast convergence for neutrino oscillations in matter</title><author>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denton, Peter B.</creatorcontrib><creatorcontrib>Parke, Stephen J.</creatorcontrib><creatorcontrib>Zhang, Xining</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denton, Peter B.</au><au>Parke, Stephen J.</au><au>Zhang, Xining</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci fast convergence for neutrino oscillations in matter</atitle><jtitle>Physics letters. B</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>807</volume><issue>C</issue><spage>135592</spage><pages>135592-</pages><artnum>135592</artnum><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2020.135592</doi><orcidid>https://orcid.org/0000-0003-2028-6782</orcidid><orcidid>https://orcid.org/0000-0001-8959-8405</orcidid><orcidid>https://orcid.org/0000000320286782</orcidid><orcidid>https://orcid.org/0000000189598405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-2693
ispartof Physics letters. B, 2020-08, Vol.807 (C), p.135592, Article 135592
issn 0370-2693
1873-2445
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21
source ScienceDirect Freedom Collection; ScienceDirect (Online service)
subjects PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Fibonacci fast convergence for neutrino oscillations in matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20fast%20convergence%20for%20neutrino%20oscillations%20in%20matter&rft.jtitle=Physics%20letters.%20B&rft.au=Denton,%20Peter%20B.&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-08-10&rft.volume=807&rft.issue=C&rft.spage=135592&rft.pages=135592-&rft.artnum=135592&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2020.135592&rft_dat=%3Celsevier_doaj_%3ES0370269320303968%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true