Loading…
Fibonacci fast convergence for neutrino oscillations in matter
Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exp...
Saved in:
Published in: | Physics letters. B 2020-08, Vol.807 (C), p.135592, Article 135592 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723 |
container_end_page | |
container_issue | C |
container_start_page | 135592 |
container_title | Physics letters. B |
container_volume | 807 |
creator | Denton, Peter B. Parke, Stephen J. Zhang, Xining |
description | Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations. |
doi_str_mv | 10.1016/j.physletb.2020.135592 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269320303968</els_id><doaj_id>oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21</doaj_id><sourcerecordid>S0370269320303968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</originalsourceid><addsrcrecordid>eNqFkE9L7TAQxYM8wfvUryDFfa-TpEnbjSiiT0Fwo-uQTqaaS20kiYLf3vRV3LoamD_nnPkxdsJhy4Hrs9327eUzTZSHrQBRmlKpXuyxDe9aWYumUX_YBmQLtdC9PGB_U9oBAFegN-z8xg9htoi-Gm3KFYb5g-IzzUjVGGI103uOfg5VSOinyWYf5lT5uXq1OVM8YvujnRIdf9dD9nRz_Xh1W98__Lu7uryvsVEy14IG1GJEgBG10koMljeopZPUDYJzLVFh33Vtp7SQfCgDFIPWMDoxqlbIQ3a36rpgd-Yt-lcbP02w3vxvhPhsbMweJzJt44R1Fh2AanoiK4CDhVY1JB0JXrROV62QsjflrUz4Uv6eCbMpUVTD-7Kk1yWMIaVI448pB7NgNyXGN3azYDcr9nJ4sR5SwfHhKS4OC07n42Lggv9N4guscI5J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fibonacci fast convergence for neutrino oscillations in matter</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect (Online service)</source><creator>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining</creator><creatorcontrib>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2020.135592</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physics letters. B, 2020-08, Vol.807 (C), p.135592, Article 135592</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</citedby><cites>FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</cites><orcidid>0000-0003-2028-6782 ; 0000-0001-8959-8405 ; 0000000320286782 ; 0000000189598405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269320303968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635419$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Denton, Peter B.</creatorcontrib><creatorcontrib>Parke, Stephen J.</creatorcontrib><creatorcontrib>Zhang, Xining</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Fibonacci fast convergence for neutrino oscillations in matter</title><title>Physics letters. B</title><description>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</description><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkE9L7TAQxYM8wfvUryDFfa-TpEnbjSiiT0Fwo-uQTqaaS20kiYLf3vRV3LoamD_nnPkxdsJhy4Hrs9327eUzTZSHrQBRmlKpXuyxDe9aWYumUX_YBmQLtdC9PGB_U9oBAFegN-z8xg9htoi-Gm3KFYb5g-IzzUjVGGI103uOfg5VSOinyWYf5lT5uXq1OVM8YvujnRIdf9dD9nRz_Xh1W98__Lu7uryvsVEy14IG1GJEgBG10koMljeopZPUDYJzLVFh33Vtp7SQfCgDFIPWMDoxqlbIQ3a36rpgd-Yt-lcbP02w3vxvhPhsbMweJzJt44R1Fh2AanoiK4CDhVY1JB0JXrROV62QsjflrUz4Uv6eCbMpUVTD-7Kk1yWMIaVI448pB7NgNyXGN3azYDcr9nJ4sR5SwfHhKS4OC07n42Lggv9N4guscI5J</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Denton, Peter B.</creator><creator>Parke, Stephen J.</creator><creator>Zhang, Xining</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2028-6782</orcidid><orcidid>https://orcid.org/0000-0001-8959-8405</orcidid><orcidid>https://orcid.org/0000000320286782</orcidid><orcidid>https://orcid.org/0000000189598405</orcidid></search><sort><creationdate>20200810</creationdate><title>Fibonacci fast convergence for neutrino oscillations in matter</title><author>Denton, Peter B. ; Parke, Stephen J. ; Zhang, Xining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denton, Peter B.</creatorcontrib><creatorcontrib>Parke, Stephen J.</creatorcontrib><creatorcontrib>Zhang, Xining</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denton, Peter B.</au><au>Parke, Stephen J.</au><au>Zhang, Xining</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci fast convergence for neutrino oscillations in matter</atitle><jtitle>Physics letters. B</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>807</volume><issue>C</issue><spage>135592</spage><pages>135592-</pages><artnum>135592</artnum><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Understanding neutrino oscillations in matter requires a non-trivial diagonalization of the Hamiltonian. As the exact solution is very complicated, many approximation schemes have been pursued. Here we show that one scheme, systematically applying rotations to change to a better basis, converges exponentially fast wherein the rate of convergence follows the Fibonacci sequence. We find that the convergence rate of this procedure depends very sensitively on the initial choices of the rotations as well as the mechanism of selecting the pivots. We then apply this scheme for neutrino oscillations in matter and discover that the optimal convergence rate is found using the following simple strategy: first apply the vacuum (2-3) rotation and then use the largest off-diagonal element as the pivot for each of the following rotations. The Fibonacci convergence rate presented here may be extendable to systems beyond neutrino oscillations.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2020.135592</doi><orcidid>https://orcid.org/0000-0003-2028-6782</orcidid><orcidid>https://orcid.org/0000-0001-8959-8405</orcidid><orcidid>https://orcid.org/0000000320286782</orcidid><orcidid>https://orcid.org/0000000189598405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2020-08, Vol.807 (C), p.135592, Article 135592 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_74d2adacd00549eea2010a0754e3de21 |
source | ScienceDirect Freedom Collection; ScienceDirect (Online service) |
subjects | PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
title | Fibonacci fast convergence for neutrino oscillations in matter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20fast%20convergence%20for%20neutrino%20oscillations%20in%20matter&rft.jtitle=Physics%20letters.%20B&rft.au=Denton,%20Peter%20B.&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-08-10&rft.volume=807&rft.issue=C&rft.spage=135592&rft.pages=135592-&rft.artnum=135592&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2020.135592&rft_dat=%3Celsevier_doaj_%3ES0370269320303968%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-2ebc62fc00fc65652ba14c63d3e8b21163c5c9887856231b3d3c2b660fd2f5723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |