Loading…
A Survey of DDOS Attacks Using Machine Learning Techniques
The DDoS attacks are the most destructive attacks that interrupt the safe operation of essential services delivered by the internet community’s different organizations. DDOS stands for Distributed Denial Of Service attacks. These attacks are becoming more complex and expected to expand in number day...
Saved in:
Published in: | E3S web of conferences 2020-01, Vol.184, p.1052 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The DDoS attacks are the most destructive attacks that interrupt the safe operation of essential services delivered by the internet community’s different organizations. DDOS stands for Distributed Denial Of Service attacks. These attacks are becoming more complex and expected to expand in number day after day, rendering detecting and combating these threats challenging. Hence, an advanced intrusion detection system (IDS) is required to identify and recognize an- anomalous internet traffic behaviour. Within this article the process is supported on the latest dataset containing the current form of DDoS attacks including (HTTP flood, SIDDoS). This study combines well-known grouping methods such as Naïve Bayes, Multilayer Perceptron (MLP), and SVM, Decision trees. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202018401052 |