Loading…

Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells

Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. is a biennial...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-12, Vol.24 (1), p.254
Main Authors: Karadeniz, Fatih, Oh, Jung Hwan, Jang, Mi Soon, Seo, Youngwan, Kong, Chang-Suk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24010254