Loading…

A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision

In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation,...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2023-01, Vol.10 (1), p.26-11, Article 26
Main Authors: Sharma, Abhishek, Rai, Vijeth, Calvert, Melissa, Dai, Zhongyi, Guo, Zhenghao, Boe, David, Rombokas, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3
cites cdi_FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3
container_end_page 11
container_issue 1
container_start_page 26
container_title Scientific data
container_volume 10
creator Sharma, Abhishek
Rai, Vijeth
Calvert, Melissa
Dai, Zhongyi
Guo, Zhenghao
Boe, David
Rombokas, Eric
description In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, obstacle course navigation, dynamic movements intended to test agility, and negotiating common obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from a college student population with an approximately equal split of males to females. In addition, for one of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. Finally, we provide some examples of applications using the dataset and discuss how it might open possibilities for new studies in human gait analysis.
doi_str_mv 10.1038/s41597-023-01932-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_76b503fce1f942dd808235fa4ae163fc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76b503fce1f942dd808235fa4ae163fc</doaj_id><sourcerecordid>2764915376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEjr-ji9IpfRLXcEFuFqTxF68ysbFTpD23-NuSmk5cLI1884zH29VvabwngJvTrKg0ugaGK-BGs5q_aw6ZCBZLYTizx_9D6rjnDcAQLkAqeFldcCV4pJTdVjdnJLPcaxX2MaEU0w7colhIp9wwuwmEj25mIeBfIz9jtyE0W1xCl0mOPbkfB07N04pdOR7yCGOr6oXHofsju_fo-rbxfnXs6t69eXy-ux0VXdSwFQzypTpeWuQCeoNaIdctI0DCa1mILThLXhuKDJU3jtP0aDjPaCXraeOH1XXC7ePuLG3KWwx7WzEYPeBmNYWUxlzcFarVgL3nSuNBOv7BhrGpUeBjqoSL6wPC-t2breu3y-EwxPo08wYfth1_GVNwzVtmgJ4dw9I8efs8mS3IXduGHB0cc6WaSW1FkarIn37j3QT5zSWU92phKGS71VsUXUp5pycfxiGgr2z3i7W22K93VtvdSl683iNh5I_RhcBXwS5pMa1S397_wf7G3AouHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764915376</pqid></control><display><type>article</type><title>A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sharma, Abhishek ; Rai, Vijeth ; Calvert, Melissa ; Dai, Zhongyi ; Guo, Zhenghao ; Boe, David ; Rombokas, Eric</creator><creatorcontrib>Sharma, Abhishek ; Rai, Vijeth ; Calvert, Melissa ; Dai, Zhongyi ; Guo, Zhenghao ; Boe, David ; Rombokas, Eric</creatorcontrib><description>In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, obstacle course navigation, dynamic movements intended to test agility, and negotiating common obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from a college student population with an approximately equal split of males to females. In addition, for one of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. Finally, we provide some examples of applications using the dataset and discuss how it might open possibilities for new studies in human gait analysis.</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-023-01932-7</identifier><identifier>PMID: 36635316</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 639/166/985 ; 639/166/988 ; 639/705/1046 ; 692/700/478 ; Biomechanical Phenomena ; Classrooms ; Computer engineering ; Data Descriptor ; Datasets ; Experiments ; Female ; Gait ; Humanities and Social Sciences ; Humans ; Kinematics ; Laboratories ; Locomotion ; Male ; Motion capture ; multidisciplinary ; Public spaces ; Science ; Science (multidisciplinary) ; Walking</subject><ispartof>Scientific data, 2023-01, Vol.10 (1), p.26-11, Article 26</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3</citedby><cites>FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3</cites><orcidid>0000-0001-6666-2179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2764915376/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2764915376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36635316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Rai, Vijeth</creatorcontrib><creatorcontrib>Calvert, Melissa</creatorcontrib><creatorcontrib>Dai, Zhongyi</creatorcontrib><creatorcontrib>Guo, Zhenghao</creatorcontrib><creatorcontrib>Boe, David</creatorcontrib><creatorcontrib>Rombokas, Eric</creatorcontrib><title>A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, obstacle course navigation, dynamic movements intended to test agility, and negotiating common obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from a college student population with an approximately equal split of males to females. In addition, for one of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. Finally, we provide some examples of applications using the dataset and discuss how it might open possibilities for new studies in human gait analysis.</description><subject>631/114/1305</subject><subject>639/166/985</subject><subject>639/166/988</subject><subject>639/705/1046</subject><subject>692/700/478</subject><subject>Biomechanical Phenomena</subject><subject>Classrooms</subject><subject>Computer engineering</subject><subject>Data Descriptor</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Female</subject><subject>Gait</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Locomotion</subject><subject>Male</subject><subject>Motion capture</subject><subject>multidisciplinary</subject><subject>Public spaces</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Walking</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CALHHhEjr-ji9IpfRLXcEFuFqTxF68ysbFTpD23-NuSmk5cLI1884zH29VvabwngJvTrKg0ugaGK-BGs5q_aw6ZCBZLYTizx_9D6rjnDcAQLkAqeFldcCV4pJTdVjdnJLPcaxX2MaEU0w7colhIp9wwuwmEj25mIeBfIz9jtyE0W1xCl0mOPbkfB07N04pdOR7yCGOr6oXHofsju_fo-rbxfnXs6t69eXy-ux0VXdSwFQzypTpeWuQCeoNaIdctI0DCa1mILThLXhuKDJU3jtP0aDjPaCXraeOH1XXC7ePuLG3KWwx7WzEYPeBmNYWUxlzcFarVgL3nSuNBOv7BhrGpUeBjqoSL6wPC-t2breu3y-EwxPo08wYfth1_GVNwzVtmgJ4dw9I8efs8mS3IXduGHB0cc6WaSW1FkarIn37j3QT5zSWU92phKGS71VsUXUp5pycfxiGgr2z3i7W22K93VtvdSl683iNh5I_RhcBXwS5pMa1S397_wf7G3AouHA</recordid><startdate>20230112</startdate><enddate>20230112</enddate><creator>Sharma, Abhishek</creator><creator>Rai, Vijeth</creator><creator>Calvert, Melissa</creator><creator>Dai, Zhongyi</creator><creator>Guo, Zhenghao</creator><creator>Boe, David</creator><creator>Rombokas, Eric</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6666-2179</orcidid></search><sort><creationdate>20230112</creationdate><title>A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision</title><author>Sharma, Abhishek ; Rai, Vijeth ; Calvert, Melissa ; Dai, Zhongyi ; Guo, Zhenghao ; Boe, David ; Rombokas, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1305</topic><topic>639/166/985</topic><topic>639/166/988</topic><topic>639/705/1046</topic><topic>692/700/478</topic><topic>Biomechanical Phenomena</topic><topic>Classrooms</topic><topic>Computer engineering</topic><topic>Data Descriptor</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Female</topic><topic>Gait</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Locomotion</topic><topic>Male</topic><topic>Motion capture</topic><topic>multidisciplinary</topic><topic>Public spaces</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Rai, Vijeth</creatorcontrib><creatorcontrib>Calvert, Melissa</creatorcontrib><creatorcontrib>Dai, Zhongyi</creatorcontrib><creatorcontrib>Guo, Zhenghao</creatorcontrib><creatorcontrib>Boe, David</creatorcontrib><creatorcontrib>Rombokas, Eric</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Abhishek</au><au>Rai, Vijeth</au><au>Calvert, Melissa</au><au>Dai, Zhongyi</au><au>Guo, Zhenghao</au><au>Boe, David</au><au>Rombokas, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2023-01-12</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>26</spage><epage>11</epage><pages>26-11</pages><artnum>26</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, obstacle course navigation, dynamic movements intended to test agility, and negotiating common obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from a college student population with an approximately equal split of males to females. In addition, for one of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. Finally, we provide some examples of applications using the dataset and discuss how it might open possibilities for new studies in human gait analysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36635316</pmid><doi>10.1038/s41597-023-01932-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6666-2179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2023-01, Vol.10 (1), p.26-11, Article 26
issn 2052-4463
2052-4463
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_76b503fce1f942dd808235fa4ae163fc
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
639/166/985
639/166/988
639/705/1046
692/700/478
Biomechanical Phenomena
Classrooms
Computer engineering
Data Descriptor
Datasets
Experiments
Female
Gait
Humanities and Social Sciences
Humans
Kinematics
Laboratories
Locomotion
Male
Motion capture
multidisciplinary
Public spaces
Science
Science (multidisciplinary)
Walking
title A Non-Laboratory Gait Dataset of Full Body Kinematics and Egocentric Vision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-Laboratory%20Gait%20Dataset%20of%20Full%20Body%20Kinematics%20and%20Egocentric%20Vision&rft.jtitle=Scientific%20data&rft.au=Sharma,%20Abhishek&rft.date=2023-01-12&rft.volume=10&rft.issue=1&rft.spage=26&rft.epage=11&rft.pages=26-11&rft.artnum=26&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-023-01932-7&rft_dat=%3Cproquest_doaj_%3E2764915376%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-21269d3b9a241f907ea34b8e050b7204793b0f391a2a6ffef1a9ae3d0af5bf1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2764915376&rft_id=info:pmid/36635316&rfr_iscdi=true