Loading…
Effect of the Average Energy on WC Grain Growth of WC-10Co-4Cr Composite by Laser Cladding
In the present study, the microstructure evolution of WC-10Co-4Cr powder deposited on AISI-SAE 1020 steel substrate by laser cladding was evaluated, considering the effect of average energy per unit area. Single tracks were obtained by employing a Yb: YAG laser system with selected processing parame...
Saved in:
Published in: | Metals (Basel ) 2019-12, Vol.9 (12), p.1245 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, the microstructure evolution of WC-10Co-4Cr powder deposited on AISI-SAE 1020 steel substrate by laser cladding was evaluated, considering the effect of average energy per unit area. Single tracks were obtained by employing a Yb: YAG laser system with selected processing parameters. All samples were sectioned in the transverse direction for further characterization of the cladding. Results showed that dilution lay within 15% and 25%, whereas porosity was measured below 12%. According to microstructural analyses, considerable grain growth is developed within the central area of the cladding (namely, the inner region); additionally, the development of a triangular and/or polygonal morphology for WC particles along with a clear reduction in hardness was observed when employing a high average energy. It is worth noting that, in spite of the rapid thermal cycles developed during laser cladding of WC-10Co-4Cr, grain growth is attributed to a coalescence mechanism due to complete merging of WC into larger particles. Finally, the presence of small round or ellipsoidal particles within the inner region of the cladding suggested that non-merged particles occurred due to both an inhomogeneous dispersion and the lack of faced-shaped WC particles. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met9121245 |