Loading…

Effect of the Average Energy on WC Grain Growth of WC-10Co-4Cr Composite by Laser Cladding

In the present study, the microstructure evolution of WC-10Co-4Cr powder deposited on AISI-SAE 1020 steel substrate by laser cladding was evaluated, considering the effect of average energy per unit area. Single tracks were obtained by employing a Yb: YAG laser system with selected processing parame...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2019-12, Vol.9 (12), p.1245
Main Authors: López-Baltazar, Enrique A., Ruiz-Luna, Haideé, Baltazar-Hernández, Víctor H., Ruiz-Mondragón, José Jorge, Ibarra-Medina, Juansethi, Alvarado-Orozco, Juan Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the microstructure evolution of WC-10Co-4Cr powder deposited on AISI-SAE 1020 steel substrate by laser cladding was evaluated, considering the effect of average energy per unit area. Single tracks were obtained by employing a Yb: YAG laser system with selected processing parameters. All samples were sectioned in the transverse direction for further characterization of the cladding. Results showed that dilution lay within 15% and 25%, whereas porosity was measured below 12%. According to microstructural analyses, considerable grain growth is developed within the central area of the cladding (namely, the inner region); additionally, the development of a triangular and/or polygonal morphology for WC particles along with a clear reduction in hardness was observed when employing a high average energy. It is worth noting that, in spite of the rapid thermal cycles developed during laser cladding of WC-10Co-4Cr, grain growth is attributed to a coalescence mechanism due to complete merging of WC into larger particles. Finally, the presence of small round or ellipsoidal particles within the inner region of the cladding suggested that non-merged particles occurred due to both an inhomogeneous dispersion and the lack of faced-shaped WC particles.
ISSN:2075-4701
2075-4701
DOI:10.3390/met9121245