Loading…
Identifying Phage Virion Proteins by Using Two-Step Feature Selection Methods
Accurate identification of phage virion protein is not only a key step for understanding the function of the phage virion protein but also helpful for further understanding the lysis mechanism of the bacterial cell. Since traditional experimental methods are time-consuming and costly for identifying...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2018-08, Vol.23 (8), p.2000 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate identification of phage virion protein is not only a key step for understanding the function of the phage virion protein but also helpful for further understanding the lysis mechanism of the bacterial cell. Since traditional experimental methods are time-consuming and costly for identifying phage virion proteins, it is extremely urgent to apply machine learning methods to accurately and efficiently identify phage virion proteins. In this work, a support vector machine (SVM) based method was proposed by mixing multiple sets of optimal g-gap dipeptide compositions. The analysis of variance (ANOVA) and the minimal-redundancy-maximal-relevance (mRMR) with an increment feature selection (IFS) were applied to single out the optimal feature set. In the five-fold cross-validation test, the proposed method achieved an overall accuracy of 87.95%. We believe that the proposed method will become an efficient and powerful method for scientists concerning phage virion proteins. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules23082000 |