Loading…
Some Categorical Properties of Linear Systems
Linear control systems are studied by means of a state-space approach. Feedback morphisms are presented as natural generalization of feedback equivalences. The set of feedback morphisms between two linear systems is a vector space. Kernels, cokernels, as well as monomorphisms, epimorphisms, sections...
Saved in:
Published in: | Mathematics (Basel) 2022-06, Vol.10 (12), p.2088 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear control systems are studied by means of a state-space approach. Feedback morphisms are presented as natural generalization of feedback equivalences. The set of feedback morphisms between two linear systems is a vector space. Kernels, cokernels, as well as monomorphisms, epimorphisms, sections, and retracts of feedback morphisms are studied in the category of linear systems over finite dimensional vector spaces. Finally, a classical Kalman’s decomposition of linear systems over vector spaces is presented as a split short exact sequence in the category. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10122088 |