Loading…

A Machine Learning Method for Vision-Based Unmanned Aerial Vehicle Systems to Understand Unknown Environments

What makes unmanned aerial vehicles (UAVs) intelligent is their capability of sensing and understanding new unknown environments. Some studies utilize computer vision algorithms like Visual Simultaneous Localization and Mapping (VSLAM) and Visual Odometry (VO) to sense the environment for pose estim...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-06, Vol.20 (11), p.3245
Main Authors: Zhang, Tianyao, Hu, Xiaoguang, Xiao, Jin, Zhang, Guofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:What makes unmanned aerial vehicles (UAVs) intelligent is their capability of sensing and understanding new unknown environments. Some studies utilize computer vision algorithms like Visual Simultaneous Localization and Mapping (VSLAM) and Visual Odometry (VO) to sense the environment for pose estimation, obstacles avoidance and visual servoing. However, understanding the new environment (i.e., make the UAV recognize generic objects) is still an essential scientific problem that lacks a solution. Therefore, this paper takes a step to understand the items in an unknown environment. The aim of this research is to enable the UAV with basic understanding capability for a high-level UAV flock application in the future. Specially, firstly, the proposed understanding method combines machine learning and traditional algorithm to understand the unknown environment through RGB images; secondly, the You Only Look Once (YOLO) object detection system is integrated (based on TensorFlow) in a smartphone to perceive the position and category of 80 classes of objects in the images; thirdly, the method makes the UAV more intelligent and liberates the operator from labor; fourthly, detection accuracy and latency in working condition are quantitatively evaluated, and properties of generality (can be used in various platforms), transportability (easily deployed from one platform to another) and scalability (easily updated and maintained) for UAV flocks are qualitatively discussed. The experiments suggest that the method has enough accuracy to recognize various objects with high computational speed, and excellent properties of generality, transportability and scalability.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20113245