Loading…
Self-cleaning superhydrophobic fly ash geopolymer
Building materials with hydrophobic surfaces can exhibit increased service life by preventing moisture absorption or diffusion through their surfaces. For concrete used in construction, this hydrophobicity can prevent the corrosion of reinforcing steel bars. Geopolymers are a new cement-free binding...
Saved in:
Published in: | Scientific reports 2023-01, Vol.13 (1), p.44-9, Article 44 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Building materials with hydrophobic surfaces can exhibit increased service life by preventing moisture absorption or diffusion through their surfaces. For concrete used in construction, this hydrophobicity can prevent the corrosion of reinforcing steel bars. Geopolymers are a new cement-free binding material that have been extensively studied to replace Portland cement. However, similar to normal concrete, geopolymers are susceptible to the intake of moisture. This paper presents the fabrication of a superhydrophobic and self-cleaning surface on a fly ash geopolymer as a method to prevent moisture intake. A composite coating of polydimethylsiloxane (PDMS) solution containing dispersed polytetrafluoroethylene (PTFE) or calcium stearate (CS) microparticles was applied by dip-coating to form the hydrophobic surface. Additionally, fly ash was incorporated with the PTFE and CS microparticles to increase surface roughness and reduce material cost. The experimental results showed that the coating containing CS microparticles yielded a hydrophobic surface with a contact angle of 140°, while those containing PTFE microparticles provided a superhydrophobic surface with a contact angle of 159°. The incorporation of fly ash resulted in increased surface roughness, leading to a larger contact angle and a smaller sliding angle. A contact angle of 153° with a sliding angle of 8.7° was observed on the PTFE/fly ash-coated surface. The cleaning process was demonstrated with a test whereby dust was removed by water droplets rolling off the surface. The tested coating exhibited self-cleaning and waterproofing properties and could thus improve the sustainability of materials in building construction. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-27061-6 |