Loading…
Four-dimensional $$\mathcal{N}$$ = 2 superconformal long circular quivers
We study four-dimensional $$\mathcal{N}$$ = 2 superconformal circular, cyclic symmetric quiver theories which are planar equivalent to $$\mathcal{N}$$ = 4 super Yang-Mills. We use localization to compute nonplanar corrections to the free energy and the circular half-BPS Wilson loop in these theories...
Saved in:
Published in: | The journal of high energy physics 2024-04, Vol.2024 (4), p.1-33, Article 54 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study four-dimensional
$$\mathcal{N}$$
= 2 superconformal circular, cyclic symmetric quiver theories which are planar equivalent to
$$\mathcal{N}$$
= 4 super Yang-Mills. We use localization to compute nonplanar corrections to the free energy and the circular half-BPS Wilson loop in these theories for an arbitrary number of nodes, and examine their behaviour in the limit of long quivers. Exploiting the relationship between the localization quiver matrix integrals and an integrable Bessel operator, we find a closed-form expression for the leading nonplanar correction to both observables in the limit when the number of nodes and ’t Hooft coupling become large. We demonstrate that it has different asymptotic behaviour depending on how the two parameters are compared, and interpret this behaviour in terms of properties of a lattice model defined on the quiver diagram. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP04(2024)054 |