Loading…
The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems with Regular Pencils
This paper introduces a general solution of singular fractional-order linear-time invariant (FoLTI) continuous systems using the Adomian Decomposition Method (ADM) based on the Caputo's definition of the fractional-order derivative. The complexity of their entropy lies in defining the complete...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2018-05, Vol.20 (6), p.400 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a general solution of singular fractional-order linear-time invariant (FoLTI) continuous systems using the Adomian Decomposition Method (ADM) based on the Caputo's definition of the fractional-order derivative. The complexity of their entropy lies in defining the complete solution of such systems, which depends on introducing a method of decomposing their dynamic states from their static states. The solution is formulated by converting the singular system of regular pencils into a recursive form using the sequence of transformations, which separates the dynamic variables from the algebraic variables. The main idea of this work is demonstrated via numerical examples. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e20060400 |