Loading…
Combinatorics of Second Derivative: Graphical Proof of Glaisher-Crofton Identity
We give a purely combinatorial proof of the Glaisher-Crofton identity which is derived from the analysis of discrete structures generated by the iterated action of the second derivative. The argument illustrates the utility of symbolic and generating function methodology of modern enumerative combin...
Saved in:
Published in: | Advances in mathematical physics 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a purely combinatorial proof of the Glaisher-Crofton identity which is derived from the analysis of discrete structures generated by the iterated action of the second derivative. The argument illustrates the utility of symbolic and generating function methodology of modern enumerative combinatorics. The paper is meant for nonspecialists as a gentle introduction to the field of graphical calculus and its applications in computational problems. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2018/9575626 |