Loading…
Glutamic Acid Decarboxylase Concentration Changes in Response to Stress and Altered Availability of Glutamic Acid in Rabbit ( Oryctolagus cuniculus ) Brain Limbic Structures
Glutamic acid decarboxylase (GAD) is an enzyme that catalyses the formation of γ-aminobutyric acid (GABA), the most important inhibitory neurotransmitter, from glutamic acid (Glu), which is considered the most important excitatory transmitter in the central and peripheral nervous systems. GAD is a k...
Saved in:
Published in: | Animals (Basel) 2021-02, Vol.11 (2), p.455 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glutamic acid decarboxylase (GAD) is an enzyme that catalyses the formation of γ-aminobutyric acid (GABA), the most important inhibitory neurotransmitter, from glutamic acid (Glu), which is considered the most important excitatory transmitter in the central and peripheral nervous systems. GAD is a key enzyme that provides a balance between Glu and GABA concentration. Hence, it can be assumed that if the GAD executes the synthesis of GABA from Glu, it is important in the stress response, and thus also in triggering the emotional states of the body that accompany stress. The aim of the study was to investigate the concentration of the GAD in motivational structures in the brain of the rabbit (
) under altered homeostatic conditions caused by stress and variable availability of Glu. Summarising, the experimental results clearly showed variable concentrations of GAD in the motivational structures of the rabbit brain. The highest concentration of GAD was found in the hypothalamus, which suggests a strong effect of Glu and GABA on the activity of this brain structure. The GAD concentrations in individual experimental groups depended to a greater extent on blocking the activity of glutamate receptors than on the effects of a single stress exposure. The results obtained clearly support the possibility that a rapid change in the concentration of GAD could shift bodily responses to quickly achieve homeostasis, especially in this species. Further studies are necessary to reveal the role of the Glu-GAD-GABA system in the modulation of stress situations as well as in body homeostasis. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani11020455 |