Loading…

Study on the Design and Cutting Performance of a Revolving Cycloid Milling Cutter

Problems such as low machining efficiency, severe tool wear and difficulty in safeguarding surface quality always exist in the machining process of titanium alloy with ball-end milling cutters. To address these issues, the design and manufacture of a revolving cycloid milling cutter for titanium all...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-07, Vol.9 (14), p.2915
Main Authors: Wang, Guangyue, Liu, Xianli, Gao, Weijie, Yan, Bingxin, Chen, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Problems such as low machining efficiency, severe tool wear and difficulty in safeguarding surface quality always exist in the machining process of titanium alloy with ball-end milling cutters. To address these issues, the design and manufacture of a revolving cycloid milling cutter for titanium alloy processing were studied in this paper. Firstly, the mathematical model of the revolving cycloid milling cutter contour surface was established. The parametric equation of an orthogonal helix cutting edge curve of a revolving cycloid milling cutter is presented. Then, the bottom boundary curve of the rake face is introduced. The five-axis grinding trajectory equation of revolving cycloid milling cutter rake face was derived based on the edge curve equation and coordinate transformation. Next, fabricating the revolving cycloid milling cutter and detecting the grinding accuracy of tool profile and geometric angle were performed. At last, a contrast test regarding the performance of the revolving cycloid milling cutter and the ball-end milling cutter in cutting titanium alloy TC11 was carried out. According to the test results, in comparison to the ball-end milling cutter, the revolving cycloid milling cutter had a smaller ratio of the axial force to the tangential force. Moreover, its flank face wore more slowly and evenly. As a result, a good surface processing quality can be maintained even under larger wear conditions, demonstrating an outstanding cutting performance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9142915