Loading…
Investigation of General Power Sum-Connectivity Index for Some Classes of Extremal Graphs
In this work, we introduce a new topological index called a general power sum-connectivity index and we discuss this graph invariant for some classes of extremal graphs. This index is defined by YαG=∑uv∈EGdudu+dvdvα, where du and dv represent the degree of vertices u and v, respectively, and α≥1. A...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we introduce a new topological index called a general power sum-connectivity index and we discuss this graph invariant for some classes of extremal graphs. This index is defined by YαG=∑uv∈EGdudu+dvdvα, where du and dv represent the degree of vertices u and v, respectively, and α≥1. A connected graph G is called a k-generalized quasi-tree if there exists a subset Vk⊂VG of cardinality k such that the graph G−Vk is a tree but for any subset Vk−1⊂VG of cardinality k−1, the graph G−Vk−1 is not a tree. In this work, we find a sharp lower and some sharp upper bounds for this new sum-connectivity index. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/6623277 |