Loading…

Precise grading of non-muscle invasive bladder cancer with multi-scale pyramidal CNN

The grading of non-muscle invasive bladder cancer (NMIBC) continues to face challenges due to subjective interpretations, which affect the assessment of its severity. To address this challenge, we are developing an innovative artificial intelligence (AI) system aimed at objectively grading NMIBC. Th...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.25131-12, Article 25131
Main Authors: Shalata, Aya T., Alksas, Ahmed, Shehata, Mohamed, Khater, Sherry, Ezzat, Osama, Ali, Khadiga M., Gondim, Dibson, Mahmoud, Ali, El-Gendy, Eman M., Mohamed, Mohamed A., Alghamdi, Norah S., Ghazal, Mohammed, El-Baz, Ayman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The grading of non-muscle invasive bladder cancer (NMIBC) continues to face challenges due to subjective interpretations, which affect the assessment of its severity. To address this challenge, we are developing an innovative artificial intelligence (AI) system aimed at objectively grading NMIBC. This system uses a novel convolutional neural network (CNN) architecture called the multi-scale pyramidal pretrained CNN to analyze both local and global pathology markers extracted from digital pathology images. The proposed CNN structure takes as input three levels of patches, ranging from small patches (e.g., 128 × 128 ) to the largest size patches ( 512 × 512 ). These levels are then fused by random forest (RF) to estimate the severity grade of NMIBC. The optimal patch sizes and other model hyperparameters are determined using a grid search algorithm. For each patch size, the proposed system has been trained on 32K patches (comprising 16K low-grade and 16K high-grade samples) and subsequently tested on 8K patches (consisting of 4K low-grade and 4K high-grade samples), all annotated by two pathologists. Incorporating light and efficient processing, defining new benchmarks in the application of AI to histopathology, the ShuffleNet-based AI system achieved notable metrics on the testing data, including 94.25% ± 0.70% accuracy, 94.47% ± 0.93% sensitivity, 94.03% ± 0.95% specificity, and a 94.29% ± 0.70% F1-score. These results highlight its superior performance over traditional models like ResNet-18. The proposed system’s robustness in accurately grading pathology demonstrates its potential as an advanced AI tool for diagnosing human diseases in the domain of digital pathology.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-77101-6