Loading…

The main triglyceride-lipase from the insect fat body is an active phospholipase A1: identification and characterization

The main triglyceride-lipase (TG-lipase) from the fat body of Manduca sexta has been identified as the homolog of Drosophila melanogaster CG8552. This protein is conserved among insects and also shares significant sequence similarity with vertebrate phospholipases (PLs) from the phosphatidic acid pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2006-12, Vol.47 (12), p.2656-2667
Main Authors: Arrese, Estela L., Patel, Rajesh T., Soulages, Jose L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main triglyceride-lipase (TG-lipase) from the fat body of Manduca sexta has been identified as the homolog of Drosophila melanogaster CG8552. This protein is conserved among insects and also shares significant sequence similarity with vertebrate phospholipases (PLs) from the phosphatidic acid preferring-phospholipase A1 (PA-PLA1) family. It is shown here that the TG-lipase is also a PL. TG-lipase and PL activities copurify and are inhibited by, or resistant to, the same lipase inhibitors, indicating that both activities are catalyzed by the same enzyme and active site. The PL activity of TG-lipase corresponded to PL type A1. The concentration dependence of lipase activity with TG and PL micellar substrates showed saturation kinetics, with apparent Km values of 152 ± 11 and 7.8 ± 1.1 μM, respectively. TG-lipase was able to hydrolyze the major phospholipid components of the lipid droplets, phosphatidylcholine and phosphatidylethanolamine. The enzyme hydrolyzes 77 molecules of TG for every molecule of PL contained in the lipid droplets. It was observed that the activation of lipolysis in vivo is accompanied by activation of the hydrolysis of phospholipids of the lipid droplets. These results suggest that the PL activity of the insect TG-lipase could be required to allow access of the lipase to TG molecules contained in the core of the lipid droplets.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M600161-JLR200