Loading…
Proteomic and Lipidomic Profiling of Calves Experimentally Co-Infected with Influenza D Virus and Mycoplasma bovis : Insights into the Host-Pathogen Interactions
The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and ( . ), compared to single-infected calves. The present study aimed to elucidate the host...
Saved in:
Published in: | Viruses 2024-02, Vol.16 (3), p.361 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and
(
.
), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas
induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against
likely resulted in increased
replication and delayed
clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and
infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease. |
---|---|
ISSN: | 1999-4915 1999-4915 |
DOI: | 10.3390/v16030361 |