Loading…
Proof of an Outer Membrane Target of the Efflux Inhibitor Phe-Arg-β-Naphthylamide from Random Mutagenesis
Phe-Arg-β-naphthylamide (PAβN) has been characterized as an efflux pump inhibitor (EPI) acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB in . In the present study, in vitro random mutagenesis was used to evolve resistance to the sensitizing activit...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2019-01, Vol.24 (3), p.470 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phe-Arg-β-naphthylamide (PAβN) has been characterized as an efflux pump inhibitor (EPI) acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB in
. In the present study, in vitro random mutagenesis was used to evolve resistance to the sensitizing activity of PAβN with the aim of elucidating its mechanism of action. A strain was obtained that was phenotypically similar to a previously reported mutant from a serial selection approach that had no efflux-associated mutations. We could confirm that
mutations in the new mutant were unrelated to PAβN resistance. The next-generation sequencing of the two mutants revealed loss-of-function mutations in
. An engineered
knockout strain showed up to 16-fold decreased PAβN activity with large lipophilic drugs, while its efflux capacity, as well as the efficacy of other EPIs, remained unchanged. LpxM is responsible for the last acylation step in lipopolysaccharide (LPS) synthesis, and
deficiency has been shown to result in penta-acylated instead of hexa-acylated lipid A. Modeling the two lipid A types revealed steric conformational changes due to underacylation. The findings provide evidence of a target site of PAβN in the LPS layer, and prove membrane activity contributing to its drug-sensitizing potency. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24030470 |