Loading…
Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition
An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR...
Saved in:
Published in: | Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.939-945-498 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3 |
container_end_page | 945-498 |
container_issue | 2013 |
container_start_page | 939 |
container_title | Journal of Applied Mathematics |
container_volume | 2013 |
creator | Hu, Huiyi Yongsong, Xiao Ding, Rui |
description | An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems. |
doi_str_mv | 10.1155/2013/596141 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A376853478</galeid><airiti_id>P20160908001_201312_201609120001_201609120001_939_945_498</airiti_id><doaj_id>oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87</doaj_id><sourcerecordid>A376853478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</originalsourceid><addsrcrecordid>eNqFkkFv0zAUxyMEEmNw4ozkM6ibHduxfaMU2Co2MWmbxM16tV9aV0lcOe7QviEfC2-phuCCIsX237_3e1LyquotoyeMSXlaU8ZPpWmYYM-qI9ZoNaNU1M_LnjE6U1L9eFm9GsctpTWVhh1Vvy73XQ6z5TDEO8ghDuQ6R7eBMQdHzhL4gEMmS1_eoQ1uQubdOqaQNz1pYyLn0PeYxoxhIIs45BS7Dj2Z73NMuE44juEO_z1e35eCfiSfYCxsceYNkm94T24w9eQad5CmXlcpDC7sOiQwPIGX0WNHPqOL_S6O4QF8Xb1ooRvxzWE9rm6_frlZnM8uvp8tF_OLGcimzjPTSq7QSM1RIBiBGlaK1hI9882KrTxbNZzXHJDWQKF1nBu1QqNq72suVvy4Wk5eH2Frdyn0kO5thGAfg5jWFlL5eB1azaRj0KBBR4VohBFOG1ErDQAStSquj5Nrl-IWXca964L_S7q4vTikh2ULvWXcCE2LXhbFyaRYQ-kYhjbmBK48Hvvg4oBtKPmcq0ZLLpQuBR-mApfiOCZsn9oxah-GyD4MkZ2GqNDvJ3oTBg8_w3_gdxOMBcEWnmChuVJNub-a7iGU6Ql2G_dpKP_KXhVLQw3VlLJHI6vtFLGaHrI_B8ONNUJaYTT_Ddc460w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui</creator><contributor>Palhares, Reinaldo Martinez</contributor><creatorcontrib>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui ; Palhares, Reinaldo Martinez</creatorcontrib><description>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2013/596141</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Decomposition (Mathematics) ; Mathematical research ; Regression analysis ; Stochastic processes</subject><ispartof>Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.939-945-498</ispartof><rights>Copyright © 2013 Huiyi Hu et al.</rights><rights>COPYRIGHT 2013 John Wiley & Sons, Inc.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</citedby><cites>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</cites><orcidid>0000-0002-4398-5167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><contributor>Palhares, Reinaldo Martinez</contributor><creatorcontrib>Hu, Huiyi</creatorcontrib><creatorcontrib>Yongsong, Xiao</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><title>Journal of Applied Mathematics</title><description>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</description><subject>Algorithms</subject><subject>Decomposition (Mathematics)</subject><subject>Mathematical research</subject><subject>Regression analysis</subject><subject>Stochastic processes</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkkFv0zAUxyMEEmNw4ozkM6ibHduxfaMU2Co2MWmbxM16tV9aV0lcOe7QviEfC2-phuCCIsX237_3e1LyquotoyeMSXlaU8ZPpWmYYM-qI9ZoNaNU1M_LnjE6U1L9eFm9GsctpTWVhh1Vvy73XQ6z5TDEO8ghDuQ6R7eBMQdHzhL4gEMmS1_eoQ1uQubdOqaQNz1pYyLn0PeYxoxhIIs45BS7Dj2Z73NMuE44juEO_z1e35eCfiSfYCxsceYNkm94T24w9eQad5CmXlcpDC7sOiQwPIGX0WNHPqOL_S6O4QF8Xb1ooRvxzWE9rm6_frlZnM8uvp8tF_OLGcimzjPTSq7QSM1RIBiBGlaK1hI9882KrTxbNZzXHJDWQKF1nBu1QqNq72suVvy4Wk5eH2Frdyn0kO5thGAfg5jWFlL5eB1azaRj0KBBR4VohBFOG1ErDQAStSquj5Nrl-IWXca964L_S7q4vTikh2ULvWXcCE2LXhbFyaRYQ-kYhjbmBK48Hvvg4oBtKPmcq0ZLLpQuBR-mApfiOCZsn9oxah-GyD4MkZ2GqNDvJ3oTBg8_w3_gdxOMBcEWnmChuVJNub-a7iGU6Ql2G_dpKP_KXhVLQw3VlLJHI6vtFLGaHrI_B8ONNUJaYTT_Ddc460w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Huiyi</creator><creator>Yongsong, Xiao</creator><creator>Ding, Rui</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4398-5167</orcidid></search><sort><creationdate>20130101</creationdate><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><author>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Decomposition (Mathematics)</topic><topic>Mathematical research</topic><topic>Regression analysis</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Huiyi</creatorcontrib><creatorcontrib>Yongsong, Xiao</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Huiyi</au><au>Yongsong, Xiao</au><au>Ding, Rui</au><au>Palhares, Reinaldo Martinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>939</spage><epage>945-498</epage><pages>939-945-498</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/596141</doi><orcidid>https://orcid.org/0000-0002-4398-5167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.939-945-498 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; IngentaConnect Journals |
subjects | Algorithms Decomposition (Mathematics) Mathematical research Regression analysis Stochastic processes |
title | Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Innovation%20Stochastic%20Gradient%20Identification%20Algorithm%20for%20Hammerstein%20Controlled%20Autoregressive%20Autoregressive%20Systems%20Based%20on%20the%20Key%20Term%20Separation%20Principle%20and%20on%20the%20Model%20Decomposition&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Hu,%20Huiyi&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=939&rft.epage=945-498&rft.pages=939-945-498&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2013/596141&rft_dat=%3Cgale_doaj_%3EA376853478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A376853478&rft_airiti_id=P20160908001_201312_201609120001_201609120001_939_945_498&rfr_iscdi=true |