Loading…

Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition

An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.939-945-498
Main Authors: Hu, Huiyi, Yongsong, Xiao, Ding, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3
cites cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3
container_end_page 945-498
container_issue 2013
container_start_page 939
container_title Journal of Applied Mathematics
container_volume 2013
creator Hu, Huiyi
Yongsong, Xiao
Ding, Rui
description An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.
doi_str_mv 10.1155/2013/596141
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A376853478</galeid><airiti_id>P20160908001_201312_201609120001_201609120001_939_945_498</airiti_id><doaj_id>oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87</doaj_id><sourcerecordid>A376853478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</originalsourceid><addsrcrecordid>eNqFkkFv0zAUxyMEEmNw4ozkM6ibHduxfaMU2Co2MWmbxM16tV9aV0lcOe7QviEfC2-phuCCIsX237_3e1LyquotoyeMSXlaU8ZPpWmYYM-qI9ZoNaNU1M_LnjE6U1L9eFm9GsctpTWVhh1Vvy73XQ6z5TDEO8ghDuQ6R7eBMQdHzhL4gEMmS1_eoQ1uQubdOqaQNz1pYyLn0PeYxoxhIIs45BS7Dj2Z73NMuE44juEO_z1e35eCfiSfYCxsceYNkm94T24w9eQad5CmXlcpDC7sOiQwPIGX0WNHPqOL_S6O4QF8Xb1ooRvxzWE9rm6_frlZnM8uvp8tF_OLGcimzjPTSq7QSM1RIBiBGlaK1hI9882KrTxbNZzXHJDWQKF1nBu1QqNq72suVvy4Wk5eH2Frdyn0kO5thGAfg5jWFlL5eB1azaRj0KBBR4VohBFOG1ErDQAStSquj5Nrl-IWXca964L_S7q4vTikh2ULvWXcCE2LXhbFyaRYQ-kYhjbmBK48Hvvg4oBtKPmcq0ZLLpQuBR-mApfiOCZsn9oxah-GyD4MkZ2GqNDvJ3oTBg8_w3_gdxOMBcEWnmChuVJNub-a7iGU6Ql2G_dpKP_KXhVLQw3VlLJHI6vtFLGaHrI_B8ONNUJaYTT_Ddc460w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui</creator><contributor>Palhares, Reinaldo Martinez</contributor><creatorcontrib>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui ; Palhares, Reinaldo Martinez</creatorcontrib><description>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2013/596141</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Decomposition (Mathematics) ; Mathematical research ; Regression analysis ; Stochastic processes</subject><ispartof>Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.939-945-498</ispartof><rights>Copyright © 2013 Huiyi Hu et al.</rights><rights>COPYRIGHT 2013 John Wiley &amp; Sons, Inc.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</citedby><cites>FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</cites><orcidid>0000-0002-4398-5167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><contributor>Palhares, Reinaldo Martinez</contributor><creatorcontrib>Hu, Huiyi</creatorcontrib><creatorcontrib>Yongsong, Xiao</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><title>Journal of Applied Mathematics</title><description>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</description><subject>Algorithms</subject><subject>Decomposition (Mathematics)</subject><subject>Mathematical research</subject><subject>Regression analysis</subject><subject>Stochastic processes</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkkFv0zAUxyMEEmNw4ozkM6ibHduxfaMU2Co2MWmbxM16tV9aV0lcOe7QviEfC2-phuCCIsX237_3e1LyquotoyeMSXlaU8ZPpWmYYM-qI9ZoNaNU1M_LnjE6U1L9eFm9GsctpTWVhh1Vvy73XQ6z5TDEO8ghDuQ6R7eBMQdHzhL4gEMmS1_eoQ1uQubdOqaQNz1pYyLn0PeYxoxhIIs45BS7Dj2Z73NMuE44juEO_z1e35eCfiSfYCxsceYNkm94T24w9eQad5CmXlcpDC7sOiQwPIGX0WNHPqOL_S6O4QF8Xb1ooRvxzWE9rm6_frlZnM8uvp8tF_OLGcimzjPTSq7QSM1RIBiBGlaK1hI9882KrTxbNZzXHJDWQKF1nBu1QqNq72suVvy4Wk5eH2Frdyn0kO5thGAfg5jWFlL5eB1azaRj0KBBR4VohBFOG1ErDQAStSquj5Nrl-IWXca964L_S7q4vTikh2ULvWXcCE2LXhbFyaRYQ-kYhjbmBK48Hvvg4oBtKPmcq0ZLLpQuBR-mApfiOCZsn9oxah-GyD4MkZ2GqNDvJ3oTBg8_w3_gdxOMBcEWnmChuVJNub-a7iGU6Ql2G_dpKP_KXhVLQw3VlLJHI6vtFLGaHrI_B8ONNUJaYTT_Ddc460w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Huiyi</creator><creator>Yongsong, Xiao</creator><creator>Ding, Rui</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4398-5167</orcidid></search><sort><creationdate>20130101</creationdate><title>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</title><author>Hu, Huiyi ; Yongsong, Xiao ; Ding, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Decomposition (Mathematics)</topic><topic>Mathematical research</topic><topic>Regression analysis</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Huiyi</creatorcontrib><creatorcontrib>Yongsong, Xiao</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Huiyi</au><au>Yongsong, Xiao</au><au>Ding, Rui</au><au>Palhares, Reinaldo Martinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>939</spage><epage>945-498</epage><pages>939-945-498</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/596141</doi><orcidid>https://orcid.org/0000-0002-4398-5167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2013-01, Vol.2013 (2013), p.939-945-498
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_815c1a6e9ec0446494c894278aaa5e87
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; IngentaConnect Journals
subjects Algorithms
Decomposition (Mathematics)
Mathematical research
Regression analysis
Stochastic processes
title Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Innovation%20Stochastic%20Gradient%20Identification%20Algorithm%20for%20Hammerstein%20Controlled%20Autoregressive%20Autoregressive%20Systems%20Based%20on%20the%20Key%20Term%20Separation%20Principle%20and%20on%20the%20Model%20Decomposition&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Hu,%20Huiyi&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=939&rft.epage=945-498&rft.pages=939-945-498&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2013/596141&rft_dat=%3Cgale_doaj_%3EA376853478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a562t-9f537e9583e4ea94e8ab7025ed1d6b1bd1b63323ae02a0afc3397be972dd234b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A376853478&rft_airiti_id=P20160908001_201312_201609120001_201609120001_939_945_498&rfr_iscdi=true