Loading…
Molecular dynamics study of the effect of extended ingrain defects on grain growth kinetics in nanocrystalline copper
The paper presents results of a large-scale classical molecular dynamics study into the effect of ingrain defects on the grain growth rate of face centered cubic nanocrystalline material under thermal annealing. To do this, two types of virtual MD samples are used. The samples of the first type are...
Saved in:
Published in: | Scientific reports 2021-01, Vol.11 (1), p.934-9, Article 934 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents results of a large-scale classical molecular dynamics study into the effect of ingrain defects on the grain growth rate of face centered cubic nanocrystalline material under thermal annealing. To do this, two types of virtual MD samples are used. The samples of the first type are constructed artificially by filling Voronoi cells with atoms arranged in fcc lattice essentially with no ingrain defects. The other samples are obtained by natural crystallization from melted material and contain numerous extended ingrain defects. These samples with a high concentration of ingrain defects imitate nanocrystalline material produced by severe plastic deformation via high pressure torsion or equal channel angular extrusion. The samples of both types are subjected to long-time zero pressure isothermal annealing at
T
≈
0.9
T
m
(
T
m
is melting temperature) which leads to grain coarsening due to recrystallization. Direct molecular dynamics simulations of the annealing of different samples show that at the same conditions recrystallization goes two times faster in the samples with a high concentration of extended ingrain defects than in the defect-free samples. That is, to increase the thermal stability of nanostructured material the technologies used for forming nanocrystalline structures should be developed so as to avoid the thermomechanical treatment regimes leading to the formation of structures with high concentration of ingrain defects. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-79861-3 |