Loading…
Miura-Reciprocal Transformation and Symmetries for the Spectral Problems of KdV and mKdV
We present reciprocal transformations for the spectral problems of Korteveg de Vries (KdV) and modified Korteveg de Vries (mKdV) equations. The resulting equations, RKdV (reciprocal KdV) and RmKdV (reciprocal mKdV), are connected through a transformation that combines both Miura and reciprocal trans...
Saved in:
Published in: | Mathematics (Basel) 2021-05, Vol.9 (9), p.926 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present reciprocal transformations for the spectral problems of Korteveg de Vries (KdV) and modified Korteveg de Vries (mKdV) equations. The resulting equations, RKdV (reciprocal KdV) and RmKdV (reciprocal mKdV), are connected through a transformation that combines both Miura and reciprocal transformations. Lax pairs for RKdV and RmKdV are straightforwardly obtained by means of the aforementioned reciprocal transformations. We have also identified the classical Lie symmetries for the Lax pairs of RKdV and RmKdV. Non-trivial similarity reductions are computed and they yield non-autonomous ordinary differential equations (ODEs), whose Lax pairs are obtained as a consequence of the reductions. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9090926 |