Loading…

The universality of power law slopes in the solar photosphere and transition region observed with HMI and IRIS

We compare the size distributions of self-organized criticality (SOC) systems in the solar photosphere and the transition region, using magnetogram data from Helioseismic and Magnetic Imager (HMI) and Interface Region Imaging Spectrograph (IRIS) data. For each dataset we fit a combination of a Gauss...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in astronomy and space sciences 2023-03, Vol.10
Main Authors: Aschwanden, Markus J., Nhalil, Nived Vilangot
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We compare the size distributions of self-organized criticality (SOC) systems in the solar photosphere and the transition region, using magnetogram data from Helioseismic and Magnetic Imager (HMI) and Interface Region Imaging Spectrograph (IRIS) data. For each dataset we fit a combination of a Gaussian and a power law size distribution function, which yields information on four different physical processes: (i) Gaussian random noise in IRIS data; (ii) spicular events in the plages of the transition region (described by power law size distribution in IRIS data); (iii) salt-and-pepper small-scale magnetic structures (described by the random noise in HMI magnetograms); and (iv) magnetic reconnection processes in flares and nanoflares (described by power law size distributions in HMI data). We find a high correlation (CCC = 0.90) between IRIS and HMI data. Datasets with magnetic flux balance are generally found to match the SOC-predicted power law slope α F = 1.80 (for mean fluxes F ), but exceptions occur due to arbitrary choices of the HMI field-of-view. The matching cases confirm the universality of SOC-inferred flux size distributions, and agree with the results of Parnell et al. (ApJ, 2009, 698, 75–82), α F = 1.85 ± 0.14.
ISSN:2296-987X
2296-987X
DOI:10.3389/fspas.2023.1099346