Loading…

Hydrogen Sulfide in the Adipose Tissue-Physiology, Pathology and a Target for Pharmacotherapy

Hydrogen sulfide (H₂S) is synthesized in the adipose tissue mainly by cystathionine γ-lyase (CSE). Several studies have demonstrated that H₂S is involved in adipogenesis, that is the differentiation of preadipocytes to adipocytes, most likely by inhibiting phosphodiesterases and increasing cyclic AM...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2016-12, Vol.22 (1), p.63
Main Authors: Bełtowski, Jerzy, Jamroz-Wiśniewska, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen sulfide (H₂S) is synthesized in the adipose tissue mainly by cystathionine γ-lyase (CSE). Several studies have demonstrated that H₂S is involved in adipogenesis, that is the differentiation of preadipocytes to adipocytes, most likely by inhibiting phosphodiesterases and increasing cyclic AMP concentration. The effect of H₂S on adipose tissue insulin sensitivity and glucose uptake is controversial. Some studies suggest that H₂S inhibits insulin-induced glucose uptake and that excess of H₂S contributes to adipose tissue insulin resistance in metabolic syndrome. In contrast, other studies have demonstrated that H₂S stimulates glucose uptake and its deficiency contributes to insulin resistance. Similarly, the effect of H₂S on adipose tissue lipolysis is controversial. H₂S produced by perivascular adipose tissue decreases vascular tone by activating ATP-sensitive and/or voltage-gated potassium channels in smooth muscle cells. Experimental obesity induced by high calorie diet has a time dependent effect on H₂S in perivascular adipose tissue; short and long-term obesity increase and decrease H₂S production, respectively. Hyperglycemia has been consistently demonstrated to suppress CSE-H₂S pathway in various adipose tissue depots. Finally, H₂S deficiency may contribute to adipose tissue inflammation associated with obesity/metabolic syndrome.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22010063