Loading…

Cervical disc prostheses need a variable center of rotation for flexion / extension below disc level, plus a separate COR for lateral bending above disc level to more closely replicate in-vivo motion: MRI-based biomechanical in-vivo study

Cervical disc prostheses are used to preserve motion after discectomy, but they should also provide a near-physiological qualitative motion pattern. Nevertheless, they come in many completely different biomechanical concepts. This caused us to perform an in-vivo MR-based biomechanical study to furth...

Full description

Saved in:
Bibliographic Details
Published in:BMC musculoskeletal disorders 2022-03, Vol.23 (1), p.227-227, Article 227
Main Authors: Muhlbauer, Manfred K, Tomasch, Ernst, Sinz, Wolfgang, Trattnig, Siegfried, Steffan, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cervical disc prostheses are used to preserve motion after discectomy, but they should also provide a near-physiological qualitative motion pattern. Nevertheless, they come in many completely different biomechanical concepts. This caused us to perform an in-vivo MR-based biomechanical study to further investigate cervical spine motion with the aim to gain new information for improving the design of future cervical arthroplasty devices. Fifteen healthy volunteers underwent MRI-investigation (in order to avoid radiation exposure) of their cervical spines from C3 to C7; for each segment centers of rotation (COR) for flexion / extension were determined from 5 different positions, and CORs for lateral bending from 3 different positions. The motion path of the COR is then described and illustrated in relation to the respective COR for maximum flexion / extension or lateral bending, respectively, and the findings are translated into implications for a better biomechanical prosthesis-design. The COR for flexion / extension does not remain constant during motion. The CORs for the respective motion intervals were always found at different positions than the COR for maximum flexion /extension showing that the COR moves both along the x- and the y-axis throughout flexion / extension. For lateral bending a completely independent COR was found above disc-level. Flexion / extension is not a simple circular motion. Disc prostheses need a variable COR for flexion / extension below disc level with the capability to move both along the x- and the y-axis during motion, plus a second completely independent COR for lateral bending above disc level to closely replicate in-vivo motion. These findings are important for improving the biomechanical design of such devices in the future.
ISSN:1471-2474
1471-2474
DOI:10.1186/s12891-022-05121-2