Loading…
Integrated microbiomic and metabolomic dynamics of Yi traditional fermented liquor
This study examines the microbial community composition, metabolite characteristics, and the relationship between the two during the fermentation process of Yi traditional fermented liquor. Yi traditional fermented foods have a profound historical and cultural background, with significant ethnic cha...
Saved in:
Published in: | Food Chemistry: X 2024-12, Vol.24, p.102016, Article 102016 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study examines the microbial community composition, metabolite characteristics, and the relationship between the two during the fermentation process of Yi traditional fermented liquor. Yi traditional fermented foods have a profound historical and cultural background, with significant ethnic characteristics. As a case in point, Yi traditional fermented liquor is typically prepared using local plants or traditional Chinese herbs as fermentation substrates and undergoes a lengthy fermentation process, resulting in a fermented beverage that is reputed to have beneficial effects on human health. These foods are not only characterised by a distinctive flavor profile, but are also perceived to possess certain health benefits in the context of traditional ethnic medicine and wellness practices. The community composition of bacteria and fungi was analyzed using 16S rRNA and ITS1 sequencing technologies, which revealed that microbial diversity was higher in the early stages of fermentation but gradually decreased as fermentation progressed. A total of 130 major volatile flavor compounds and 26 key metabolites were identified at different stages of fermentation. These included acids, sugars, amino acids and flavonoids, which significantly influence the flavor and nutritional value of the fermented products. The study indicates a significant correlation between specific microbial populations (such as yeasts) and key metabolites (such as flavonoids and amino acids). These findings emphasise the significance of the interplay between microbial communities and metabolites in shaping the quality and efficacy of fermented products. They offer a scientific foundation for optimizing traditional fermented food production processes.
•Microbial community structure are closely related at different fermentation stages.•130 major volatile flavor compounds were detected in the fermentation process.•26 key metabolites were identified affecting the sensory properties.•The changes of microbial diversity and metabolites were closely related to fermentation stage. |
---|---|
ISSN: | 2590-1575 2590-1575 |
DOI: | 10.1016/j.fochx.2024.102016 |