Loading…
Metal Chelates of Petunidin Derivatives Exhibit Enhanced Color and Stability
Anthocyanins with catechol (cyanidin) or pyrogallol (delphinidin) moieties on the B-ring are known to chelate metals, resulting in bluing effects, mainly at pH ≤ 6. Metal interaction with petunidin, an -methylated anthocyanidin, has not been well documented. In this study, we investigated metal chel...
Saved in:
Published in: | Foods 2020-10, Vol.9 (10), p.1426 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anthocyanins with catechol (cyanidin) or pyrogallol (delphinidin) moieties on the B-ring are known to chelate metals, resulting in bluing effects, mainly at pH ≤ 6. Metal interaction with petunidin, an
-methylated anthocyanidin, has not been well documented. In this study, we investigated metal chelation of petunidin derivatives in a wide pH range and its effects on color and stability. Purple potato and black goji extracts containing >80% acylated petunidin derivatives (25 µM) were combined with Al
or Fe
at 0 µM to 1500 µM in buffers of pH 3-10. Small metal ion concentrations triggered bathochromic shifts (up to ~80nm) at an alkaline pH, resulting in vivid blue hues (h
200°-310°). Fe
caused a larger bathochromic shift than Al
, producing green colors at pH 8-9. Generally, metal ions increased the color stability and half-life of petunidin derivatives in a dose-dependent manner, particularly at pH 8. Petunidin derivative metal chelates produced a wide range of colors with enhanced stability. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods9101426 |