Loading…

Microporous Carbon Nanoparticles for Lithium-Sulfur Batteries

Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S ). However, on...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-10, Vol.10 (10), p.2012
Main Authors: Kang, Hui-Ju, Bari, Gazi A K M Rafiqul, Lee, Tae-Gyu, Khan, Tamal Tahsin, Park, Jae-Woo, Hwang, Hyun Jin, Cho, Sung Yong, Jun, Young-Si
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S ). However, one main, well-known drawback of LSBs is the so-called polysulfide shuttling, where the polysulfide dissolves into organic electrolytes from sulfur host materials. Numerous studies have shown the ability of porous carbon as a sulfur host material. Porous carbon can significantly impede polysulfide shuttling and mitigate the insulating passivation layers, such as Li S, owing to its intrinsic high electrical conductivity. This work suggests a scalable and straightforward one-step synthesis method to prepare a unique interconnected microporous and mesoporous carbon framework via salt templating with a eutectic mixture of LiI and KI at 800 °C in an inert atmosphere. The synthesis step used environmentally friendly water as a washing solvent to remove salt from the carbon-salt mixture. When employed as a sulfur host material, the electrode exhibited an excellent capacity of 780 mAh g at 500 mA g and a sulfur loading mass of 2 mg cm with a minor capacity loss of 0.36% per cycle for 100 cycles. This synthesis method of a unique porous carbon structure could provide a new avenue for the development of an electrode with a high retention capacity and high accommodated sulfur for electrochemical energy storage applications.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10102012