Loading…
Microporous Carbon Nanoparticles for Lithium-Sulfur Batteries
Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S ). However, on...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-10, Vol.10 (10), p.2012 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S
). However, one main, well-known drawback of LSBs is the so-called polysulfide shuttling, where the polysulfide dissolves into organic electrolytes from sulfur host materials. Numerous studies have shown the ability of porous carbon as a sulfur host material. Porous carbon can significantly impede polysulfide shuttling and mitigate the insulating passivation layers, such as Li
S, owing to its intrinsic high electrical conductivity. This work suggests a scalable and straightforward one-step synthesis method to prepare a unique interconnected microporous and mesoporous carbon framework via salt templating with a eutectic mixture of LiI and KI at 800 °C in an inert atmosphere. The synthesis step used environmentally friendly water as a washing solvent to remove salt from the carbon-salt mixture. When employed as a sulfur host material, the electrode exhibited an excellent capacity of 780 mAh g
at 500 mA g
and a sulfur loading mass of 2 mg cm
with a minor capacity loss of 0.36% per cycle for 100 cycles. This synthesis method of a unique porous carbon structure could provide a new avenue for the development of an electrode with a high retention capacity and high accommodated sulfur for electrochemical energy storage applications. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano10102012 |