Loading…

Nitrogen-Reduction in Intensive Cultivation Improved Nitrogen Fertilizer Utilization Efficiency and Soil Nitrogen Mineralization of Double-Cropped Rice

Under the current rice cropping system, excessive nitrogen application has become a major issue that needs to be changed, and nitrogen reduction has become a hot research topic in recent years. The use of optimum planting density is becoming a common agronomic management system in addition to nitrog...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2022-05, Vol.12 (5), p.1103
Main Authors: Luo, Zhuo, Song, Haixing, Huang, Min, Zhang, Zhenhua, Peng, Zhi, Zi, Tao, Tian, Chang, Eissa, Mamdouh A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under the current rice cropping system, excessive nitrogen application has become a major issue that needs to be changed, and nitrogen reduction has become a hot research topic in recent years. The use of optimum planting density is becoming a common agronomic management system in addition to nitrogen reduction, especially under double cropping rice systems. In this paper, changes in rice yield, nitrogen-use efficiency (NUE) and net N mineralization under dense planting with a reduced nitrogen rate (DPRN) were studied. By comparing DPRN with high-nitrogen sparse planting (SPHN), we found that the population tiller number (tiller number per unit area) increased by 9–27% under DPRN cultivation. Nitrogen accumulation under DPRN treatment of double-cropped rice was basically stable. NUE under DPRN was significantly higher by 1.3–22.7% compared to SPHN. The partial factor productivity of applied N (PFPN) was significantly higher than that of SPHN, with an increase of 4.3–22.8%. The net N mineralized of double-cropped rice under DPRN increased at different stages, and the increase in late-season rice (LSR) was greater than that of early-season rice (ESR). The highest net N mineralized in double cropping rice at different stages was found in the dense planting treatment (DP) and N2 (120 kg N h−1). In conclusion, DPRN cultivation of double-cropped rice could be accepted as a proper management strategy for reducing nitrogen input, improving NUE and promoting soil nitrogen mineralization under given conditions.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy12051103