Loading…
DSSM: A Deep Neural Network with Spectrum Separable Module for Multi-Spectral Remote Sensing Image Segmentation
Over the past few years, deep learning algorithms have held immense promise for better multi-spectral (MS) optical remote sensing image (RSI) analysis. Most of the proposed models, based on convolutional neural network (CNN) and fully convolutional network (FCN), have been applied successfully on co...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (4), p.818 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past few years, deep learning algorithms have held immense promise for better multi-spectral (MS) optical remote sensing image (RSI) analysis. Most of the proposed models, based on convolutional neural network (CNN) and fully convolutional network (FCN), have been applied successfully on computer vision images (CVIs). However, there is still a lack of exploration of spectra correlation in MS RSIs. In this study, a deep neural network with a spectrum separable module (DSSM) is proposed for semantic segmentation, which enables the utilization of MS characteristics of RSIs. The experimental results obtained on Zurich and Potsdam datasets prove that the spectrum-separable module (SSM) extracts more informative spectral features, and the proposed approach improves the segmentation accuracy without increasing GPU consumption. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14040818 |