Loading…
Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2
ObjectivesTo classify South African adults with chronic health conditions for multimorbidity (MM) risk, and to determine sociodemographic, anthropometric and behavioural factors associated with identified patterns of MM, using data from the WHO’s Study on global AGEing and adult health South Africa...
Saved in:
Published in: | BMJ open 2021-01, Vol.11 (1), p.e041604-e041604 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3 |
container_end_page | e041604 |
container_issue | 1 |
container_start_page | e041604 |
container_title | BMJ open |
container_volume | 11 |
creator | Chidumwa, Glory Maposa, Innocent Corso, Barbara Minicuci, Nadia Kowal, Paul Micklesfield, Lisa K Ware, Lisa Jayne |
description | ObjectivesTo classify South African adults with chronic health conditions for multimorbidity (MM) risk, and to determine sociodemographic, anthropometric and behavioural factors associated with identified patterns of MM, using data from the WHO’s Study on global AGEing and adult health South Africa Wave 2.DesignNationally representative (for ≥50-year-old adults) cross-sectional study.SettingAdults in South Africa between 2014 and 2015.Participants1967 individuals (men: 623 and women: 1344) aged ≥45 years for whom data on all seven health conditions and socioeconomic, demographic, behavioural, and anthropological information were available.MeasuresMM latent classes.ResultsThe prevalence of MM (coexistence of two or more non-communicable diseases (NCDs)) was 21%. The latent class analysis identified three groups namely: minimal MM risk (83%), concordant (hypertension and diabetes) MM (11%) and discordant (angina, asthma, chronic lung disease, arthritis and depression) MM (6%). Using the minimal MM risk group as the reference, female (relative risk ratio (RRR)=4.57; 95% CI (1.64 to 12.75); p =0.004) and older (RRR=1.08; 95% CI (1.04 to 1.12); p |
doi_str_mv | 10.1136/bmjopen-2020-041604 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_868bf364363f43d483ef869cc8b5b80e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_868bf364363f43d483ef869cc8b5b80e</doaj_id><sourcerecordid>2483813806</sourcerecordid><originalsourceid>FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3</originalsourceid><addsrcrecordid>eNqNksFq3DAURU1paUKaLygUQTfdOJEtyZa7KAwhTQcCXaSlS_EsPc1osK2pZAfmL_LJ1cTTadJFqTYSeudePUk3y94W9KIoWHXZ9hu_xSEvaUlzyouK8hfZaUk5zysqxMsn65PsPMYNTYOLRojydXbCmCi4qOVp9rA0OIzO7tywItrnXuspBBw0EhgM0d0URwz7ordEr4MfnCbGRYSIkUxxX-lgTB6JhRiTCrpddPEj0cHHmEfUo_Npk1g3mIRHYoPvyd3i5prc-Wlck4UNTgP5AfdIyjfZKwtdxPPDfJZ9_3z97epLfvv1Znm1uM3b1PeYay0ALGvqqigbLZihmje2BWhKUYmmlShqlK0QhmHBeMlK0A3URjJTA9YtO8uWs6_xsFHb4HoIO-XBqccNH1YKwuh0h0pWsrWs4qxiljPDJUMrq0br5N9Kisnr0-y1ndoejU6vEaB7Zvq8Mri1Wvl7VUveyEYmgw8Hg-B_ThhH1buosetgQD9FVaYzZcEkrRL6_i9046eQ3nemBJei5oliM_X4CQHtsZmCqn2A1CFAah8gNQcoqd49vcdR8zsuCbiYgaT-T8fLP4Jjo_9S_AIJ0-L8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483548574</pqid></control><display><type>article</type><title>Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2</title><source>BMJ</source><source>PMC (PubMed Central)</source><source>BMJ Journals (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Chidumwa, Glory ; Maposa, Innocent ; Corso, Barbara ; Minicuci, Nadia ; Kowal, Paul ; Micklesfield, Lisa K ; Ware, Lisa Jayne</creator><creatorcontrib>Chidumwa, Glory ; Maposa, Innocent ; Corso, Barbara ; Minicuci, Nadia ; Kowal, Paul ; Micklesfield, Lisa K ; Ware, Lisa Jayne</creatorcontrib><description>ObjectivesTo classify South African adults with chronic health conditions for multimorbidity (MM) risk, and to determine sociodemographic, anthropometric and behavioural factors associated with identified patterns of MM, using data from the WHO’s Study on global AGEing and adult health South Africa Wave 2.DesignNationally representative (for ≥50-year-old adults) cross-sectional study.SettingAdults in South Africa between 2014 and 2015.Participants1967 individuals (men: 623 and women: 1344) aged ≥45 years for whom data on all seven health conditions and socioeconomic, demographic, behavioural, and anthropological information were available.MeasuresMM latent classes.ResultsThe prevalence of MM (coexistence of two or more non-communicable diseases (NCDs)) was 21%. The latent class analysis identified three groups namely: minimal MM risk (83%), concordant (hypertension and diabetes) MM (11%) and discordant (angina, asthma, chronic lung disease, arthritis and depression) MM (6%). Using the minimal MM risk group as the reference, female (relative risk ratio (RRR)=4.57; 95% CI (1.64 to 12.75); p =0.004) and older (RRR=1.08; 95% CI (1.04 to 1.12); p<0.001) participants were more likely to belong to the concordant MM group, while tobacco users (RRR=8.41; 95% CI (1.93 to 36.69); p=0.005) and older (RRR=1.09; 95% CI (1.03 to 1.15); p=0.002) participants had a high likelihood of belonging to the discordant MM group.ConclusionNCDs with similar pathophysiological risk profiles tend to cluster together in older people. Risk factors for MM in South African adults include sex, age and tobacco use.</description><identifier>ISSN: 2044-6055</identifier><identifier>EISSN: 2044-6055</identifier><identifier>DOI: 10.1136/bmjopen-2020-041604</identifier><identifier>PMID: 33514578</identifier><language>eng</language><publisher>England: British Medical Journal Publishing Group</publisher><subject>Adult ; Adults ; Age ; Aged ; Aged, 80 and over ; Aging ; Angina pectoris ; Arthritis ; Asthma ; Blood pressure ; Chronic Disease ; Chronic illnesses ; Chronic obstructive pulmonary disease ; Cluster Analysis ; Cross-Sectional Studies ; Diabetes ; Female ; Heart rate ; Households ; Humans ; Hypertension ; Latent class analysis ; Low income groups ; Lung diseases ; Male ; Measurement techniques ; Middle Aged ; Prevalence ; Principal components analysis ; Public Health ; Risk Factors ; Rural areas ; Socioeconomic Factors ; South Africa - epidemiology ; statistics & research methods ; Tobacco</subject><ispartof>BMJ open, 2021-01, Vol.11 (1), p.e041604-e041604</ispartof><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3</citedby><cites>FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3</cites><orcidid>0000-0002-8743-9045 ; 0000-0002-9762-4017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2483548574/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2483548574?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>112,113,230,314,727,780,784,885,3194,25753,27549,27550,27924,27925,37012,37013,44590,53791,53793,55341,55350,74998,77466,77467,77468,77469,77473,77504,77532,77558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33514578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chidumwa, Glory</creatorcontrib><creatorcontrib>Maposa, Innocent</creatorcontrib><creatorcontrib>Corso, Barbara</creatorcontrib><creatorcontrib>Minicuci, Nadia</creatorcontrib><creatorcontrib>Kowal, Paul</creatorcontrib><creatorcontrib>Micklesfield, Lisa K</creatorcontrib><creatorcontrib>Ware, Lisa Jayne</creatorcontrib><title>Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2</title><title>BMJ open</title><addtitle>BMJ Open</addtitle><addtitle>BMJ Open</addtitle><description>ObjectivesTo classify South African adults with chronic health conditions for multimorbidity (MM) risk, and to determine sociodemographic, anthropometric and behavioural factors associated with identified patterns of MM, using data from the WHO’s Study on global AGEing and adult health South Africa Wave 2.DesignNationally representative (for ≥50-year-old adults) cross-sectional study.SettingAdults in South Africa between 2014 and 2015.Participants1967 individuals (men: 623 and women: 1344) aged ≥45 years for whom data on all seven health conditions and socioeconomic, demographic, behavioural, and anthropological information were available.MeasuresMM latent classes.ResultsThe prevalence of MM (coexistence of two or more non-communicable diseases (NCDs)) was 21%. The latent class analysis identified three groups namely: minimal MM risk (83%), concordant (hypertension and diabetes) MM (11%) and discordant (angina, asthma, chronic lung disease, arthritis and depression) MM (6%). Using the minimal MM risk group as the reference, female (relative risk ratio (RRR)=4.57; 95% CI (1.64 to 12.75); p =0.004) and older (RRR=1.08; 95% CI (1.04 to 1.12); p<0.001) participants were more likely to belong to the concordant MM group, while tobacco users (RRR=8.41; 95% CI (1.93 to 36.69); p=0.005) and older (RRR=1.09; 95% CI (1.03 to 1.15); p=0.002) participants had a high likelihood of belonging to the discordant MM group.ConclusionNCDs with similar pathophysiological risk profiles tend to cluster together in older people. Risk factors for MM in South African adults include sex, age and tobacco use.</description><subject>Adult</subject><subject>Adults</subject><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Angina pectoris</subject><subject>Arthritis</subject><subject>Asthma</subject><subject>Blood pressure</subject><subject>Chronic Disease</subject><subject>Chronic illnesses</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Cluster Analysis</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Female</subject><subject>Heart rate</subject><subject>Households</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Latent class analysis</subject><subject>Low income groups</subject><subject>Lung diseases</subject><subject>Male</subject><subject>Measurement techniques</subject><subject>Middle Aged</subject><subject>Prevalence</subject><subject>Principal components analysis</subject><subject>Public Health</subject><subject>Risk Factors</subject><subject>Rural areas</subject><subject>Socioeconomic Factors</subject><subject>South Africa - epidemiology</subject><subject>statistics & research methods</subject><subject>Tobacco</subject><issn>2044-6055</issn><issn>2044-6055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFq3DAURU1paUKaLygUQTfdOJEtyZa7KAwhTQcCXaSlS_EsPc1osK2pZAfmL_LJ1cTTadJFqTYSeudePUk3y94W9KIoWHXZ9hu_xSEvaUlzyouK8hfZaUk5zysqxMsn65PsPMYNTYOLRojydXbCmCi4qOVp9rA0OIzO7tywItrnXuspBBw0EhgM0d0URwz7ordEr4MfnCbGRYSIkUxxX-lgTB6JhRiTCrpddPEj0cHHmEfUo_Npk1g3mIRHYoPvyd3i5prc-Wlck4UNTgP5AfdIyjfZKwtdxPPDfJZ9_3z97epLfvv1Znm1uM3b1PeYay0ALGvqqigbLZihmje2BWhKUYmmlShqlK0QhmHBeMlK0A3URjJTA9YtO8uWs6_xsFHb4HoIO-XBqccNH1YKwuh0h0pWsrWs4qxiljPDJUMrq0br5N9Kisnr0-y1ndoejU6vEaB7Zvq8Mri1Wvl7VUveyEYmgw8Hg-B_ThhH1buosetgQD9FVaYzZcEkrRL6_i9046eQ3nemBJei5oliM_X4CQHtsZmCqn2A1CFAah8gNQcoqd49vcdR8zsuCbiYgaT-T8fLP4Jjo_9S_AIJ0-L8</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Chidumwa, Glory</creator><creator>Maposa, Innocent</creator><creator>Corso, Barbara</creator><creator>Minicuci, Nadia</creator><creator>Kowal, Paul</creator><creator>Micklesfield, Lisa K</creator><creator>Ware, Lisa Jayne</creator><general>British Medical Journal Publishing Group</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8743-9045</orcidid><orcidid>https://orcid.org/0000-0002-9762-4017</orcidid></search><sort><creationdate>20210129</creationdate><title>Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2</title><author>Chidumwa, Glory ; Maposa, Innocent ; Corso, Barbara ; Minicuci, Nadia ; Kowal, Paul ; Micklesfield, Lisa K ; Ware, Lisa Jayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Angina pectoris</topic><topic>Arthritis</topic><topic>Asthma</topic><topic>Blood pressure</topic><topic>Chronic Disease</topic><topic>Chronic illnesses</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Cluster Analysis</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Female</topic><topic>Heart rate</topic><topic>Households</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Latent class analysis</topic><topic>Low income groups</topic><topic>Lung diseases</topic><topic>Male</topic><topic>Measurement techniques</topic><topic>Middle Aged</topic><topic>Prevalence</topic><topic>Principal components analysis</topic><topic>Public Health</topic><topic>Risk Factors</topic><topic>Rural areas</topic><topic>Socioeconomic Factors</topic><topic>South Africa - epidemiology</topic><topic>statistics & research methods</topic><topic>Tobacco</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chidumwa, Glory</creatorcontrib><creatorcontrib>Maposa, Innocent</creatorcontrib><creatorcontrib>Corso, Barbara</creatorcontrib><creatorcontrib>Minicuci, Nadia</creatorcontrib><creatorcontrib>Kowal, Paul</creatorcontrib><creatorcontrib>Micklesfield, Lisa K</creatorcontrib><creatorcontrib>Ware, Lisa Jayne</creatorcontrib><collection>BMJ Journals (Open Access)</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Consumer Database (Proquest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMJ open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chidumwa, Glory</au><au>Maposa, Innocent</au><au>Corso, Barbara</au><au>Minicuci, Nadia</au><au>Kowal, Paul</au><au>Micklesfield, Lisa K</au><au>Ware, Lisa Jayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2</atitle><jtitle>BMJ open</jtitle><stitle>BMJ Open</stitle><addtitle>BMJ Open</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>e041604</spage><epage>e041604</epage><pages>e041604-e041604</pages><issn>2044-6055</issn><eissn>2044-6055</eissn><abstract>ObjectivesTo classify South African adults with chronic health conditions for multimorbidity (MM) risk, and to determine sociodemographic, anthropometric and behavioural factors associated with identified patterns of MM, using data from the WHO’s Study on global AGEing and adult health South Africa Wave 2.DesignNationally representative (for ≥50-year-old adults) cross-sectional study.SettingAdults in South Africa between 2014 and 2015.Participants1967 individuals (men: 623 and women: 1344) aged ≥45 years for whom data on all seven health conditions and socioeconomic, demographic, behavioural, and anthropological information were available.MeasuresMM latent classes.ResultsThe prevalence of MM (coexistence of two or more non-communicable diseases (NCDs)) was 21%. The latent class analysis identified three groups namely: minimal MM risk (83%), concordant (hypertension and diabetes) MM (11%) and discordant (angina, asthma, chronic lung disease, arthritis and depression) MM (6%). Using the minimal MM risk group as the reference, female (relative risk ratio (RRR)=4.57; 95% CI (1.64 to 12.75); p =0.004) and older (RRR=1.08; 95% CI (1.04 to 1.12); p<0.001) participants were more likely to belong to the concordant MM group, while tobacco users (RRR=8.41; 95% CI (1.93 to 36.69); p=0.005) and older (RRR=1.09; 95% CI (1.03 to 1.15); p=0.002) participants had a high likelihood of belonging to the discordant MM group.ConclusionNCDs with similar pathophysiological risk profiles tend to cluster together in older people. Risk factors for MM in South African adults include sex, age and tobacco use.</abstract><cop>England</cop><pub>British Medical Journal Publishing Group</pub><pmid>33514578</pmid><doi>10.1136/bmjopen-2020-041604</doi><orcidid>https://orcid.org/0000-0002-8743-9045</orcidid><orcidid>https://orcid.org/0000-0002-9762-4017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-6055 |
ispartof | BMJ open, 2021-01, Vol.11 (1), p.e041604-e041604 |
issn | 2044-6055 2044-6055 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_868bf364363f43d483ef869cc8b5b80e |
source | BMJ; PMC (PubMed Central); BMJ Journals (Open Access); Publicly Available Content (ProQuest) |
subjects | Adult Adults Age Aged Aged, 80 and over Aging Angina pectoris Arthritis Asthma Blood pressure Chronic Disease Chronic illnesses Chronic obstructive pulmonary disease Cluster Analysis Cross-Sectional Studies Diabetes Female Heart rate Households Humans Hypertension Latent class analysis Low income groups Lung diseases Male Measurement techniques Middle Aged Prevalence Principal components analysis Public Health Risk Factors Rural areas Socioeconomic Factors South Africa - epidemiology statistics & research methods Tobacco |
title | Identifying co-occurrence and clustering of chronic diseases using latent class analysis: cross-sectional findings from SAGE South Africa Wave 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20co-occurrence%20and%20clustering%20of%20chronic%20diseases%20using%20latent%20class%20analysis:%20cross-sectional%20findings%20from%20SAGE%20South%20Africa%20Wave%202&rft.jtitle=BMJ%20open&rft.au=Chidumwa,%20Glory&rft.date=2021-01-29&rft.volume=11&rft.issue=1&rft.spage=e041604&rft.epage=e041604&rft.pages=e041604-e041604&rft.issn=2044-6055&rft.eissn=2044-6055&rft_id=info:doi/10.1136/bmjopen-2020-041604&rft_dat=%3Cproquest_doaj_%3E2483813806%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b578t-cc5aaf3976129c53d0c49fbaa925659b8e57e8b55d3e134232ac9a7d83d7ae7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483548574&rft_id=info:pmid/33514578&rfr_iscdi=true |